These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34350214)

  • 1. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the metabolic cost of exoskeleton-assisted squatting using foot pressure features and machine learning.
    Ramadurai S; Jeong H; Kim M
    Front Robot AI; 2023; 10():1166248. PubMed ID: 37151375
    [No Abstract]   [Full Text] [Related]  

  • 5. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft+Rigid Hybrid Exoskeleton Concept in Scissors-Pendulum Mode: A Suit for Human State Sensing and an Exoskeleton for Assistance.
    Ugurlu B; Acer M; Barkana DE; Gocek I; Kucukyilmaz A; Arslan YZ; Basturk H; Samur E; Ugur E; Unal R; Bebek O
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():518-523. PubMed ID: 31374682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; GarcĂ­a-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON.
    Chauhan RJ; Ben-Tzvi P
    Proc ASME Dyn Syst Control Conf; 2019 Oct; 2019(3):. PubMed ID: 32030310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients.
    Peng Z; Luo R; Huang R; Yu T; Hu J; Shi K; Cheng H
    Front Neurorobot; 2020; 14():37. PubMed ID: 32719595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous motion and control of lower limb exoskeleton rehabilitation robot.
    Gao X; Zhang P; Peng X; Zhao J; Liu K; Miao M; Zhao P; Luo D; Li Y
    Front Bioeng Biotechnol; 2023; 11():1223831. PubMed ID: 37520296
    [No Abstract]   [Full Text] [Related]  

  • 13. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor.
    Falkowski P; Jeznach K
    J Neuroeng Rehabil; 2024 Feb; 21(1):22. PubMed ID: 38342919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons.
    Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X
    Front Neurosci; 2021; 15():645374. PubMed ID: 33927589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks.
    Topini A; Sansom W; Secciani N; Bartalucci L; Ridolfi A; Allotta B
    Front Neurorobot; 2021; 15():789743. PubMed ID: 35095457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Momentum-Based Balance Control of a Lower-Limb Exoskeleton During Stance.
    Vallinas A; Keemink A; Bayon C; van Asseldonk E; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel User Control for Lower Extremity Rehabilitation Exoskeletons.
    Karunakaran KK; Abbruzzese K; Androwis G; Foulds RA
    Front Robot AI; 2020; 7():108. PubMed ID: 33501275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.