These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34350692)

  • 1. S-Denitrosylase-Like Activity of Cyclic Diselenides Conjugated with Xaa-His Dipeptide: Role of Proline Spacer as a Key Activity Booster.
    Mikami R; Tsukagoshi S; Oda Y; Arai K
    Chembiochem; 2022 Mar; 23(5):e202100394. PubMed ID: 34350692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer.
    Mikami R; Tsukagoshi S; Arai K
    Biology (Basel); 2021 Oct; 10(11):. PubMed ID: 34827083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regio- and stereoselective synthesis of (E)-alkene trans-Xaa-Pro dipeptide mimetics utilizing organocopper-mediated anti-S(N)2' reactions.
    Otaka A; Katagiri F; Kinoshita T; Odagaki Y; Oishi S; Tamamura H; Hamanaka N; Fujii N
    J Org Chem; 2002 Aug; 67(17):6152-61. PubMed ID: 12182656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decisive structural determinants for the interaction of proline derivatives with the intestinal H+/peptide symporter.
    Brandsch M; Knütter I; Thunecke F; Hartrodt B; Born I; Börner V; Hirche F; Fischer G; Neubert K
    Eur J Biochem; 1999 Dec; 266(2):502-8. PubMed ID: 10561591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balance between
    Yamashita AMS; Ancillotti MTC; Rangel LP; Fontenele M; Figueiredo-Freitas C; Possidonio AC; Soares CP; Sorenson MM; Mermelstein C; Nogueira L
    Am J Physiol Cell Physiol; 2017 Jul; 313(1):C11-C26. PubMed ID: 28381519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint.
    He J; Wang T; Wang P; Han P; Yin Q; Chen C
    J Neurochem; 2007 Sep; 102(6):1863-1874. PubMed ID: 17767703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.
    Lafaye C; Van Molle I; Tamu Dufe V; Wahni K; Boudier A; Leroy P; Collet JF; Messens J
    J Biol Chem; 2016 Jul; 291(29):15020-8. PubMed ID: 27226614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational study on trans- and cis-N-acetyl-N'-methylamides of Pro-Xaa dipeptides.
    Han SJ; Kang YK
    Int J Pept Protein Res; 1993 Dec; 42(6):518-26. PubMed ID: 8307683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues.
    Hashemy SI; Holmgren A
    J Biol Chem; 2008 Aug; 283(32):21890-8. PubMed ID: 18544525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway.
    Chang AH; Sancheti H; Garcia J; Kaplowitz N; Cadenas E; Han D
    Chem Res Toxicol; 2014 May; 27(5):794-804. PubMed ID: 24716714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic studies on iodothyronine deiodinase intermediates: modeling the reduction of selenenyl iodide by thiols.
    Mugesh G; du Mont WW; Wismach C; Jones PG
    Chembiochem; 2002 May; 3(5):440-7. PubMed ID: 12007178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational study of Ac-Xaa-Pro-NHMe dipeptides: proline puckering and trans/cis imide bond.
    Kang YK; Jhon JS; Han SJ
    J Pept Res; 1999 Jan; 53(1):30-40. PubMed ID: 10195439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction mechanism of a coordinated superoxide by thiols in acidic media.
    Mishra R; Mukhopadhyay S; Banerjee R
    Dalton Trans; 2010 Mar; 39(10):2692-6. PubMed ID: 20179865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation of doubly-protonated Pro-His-Xaa tripeptides: formation of b(2)(2+) ions.
    Knapp-Mohammady M; Young AB; Paizs B; Harrison AG
    J Am Soc Mass Spectrom; 2009 Nov; 20(11):2135-43. PubMed ID: 19683937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AKR1A1 is a novel mammalian
    Stomberski CT; Anand P; Venetos NM; Hausladen A; Zhou HL; Premont RT; Stamler JS
    J Biol Chem; 2019 Nov; 294(48):18285-18293. PubMed ID: 31649033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents.
    Barbosa NV; Nogueira CW; Nogara PA; de Bem AF; Aschner M; Rocha JBT
    Metallomics; 2017 Dec; 9(12):1703-1734. PubMed ID: 29168872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.