BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34350727)

  • 1. Regional thermal hyperemia in the human leg: Evidence of the importance of thermosensitive mechanisms in the control of the peripheral circulation.
    Koch Esteves N; Gibson OR; Khir AW; González-Alonso J
    Physiol Rep; 2021 Aug; 9(15):e14953. PubMed ID: 34350727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise.
    Chiesa ST; Trangmar SJ; Kalsi KK; Rakobowchuk M; Banker DS; Lotlikar MD; Ali L; González-Alonso J
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(2):H369-80. PubMed ID: 25934093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-related changes in the velocity and kinetic energy of flowing blood influence the human heart's output during hyperthermia.
    Watanabe K; Koch Esteves N; Gibson OR; Akiyama K; Watanabe S; González-Alonso J
    J Physiol; 2024 May; 602(10):2227-2251. PubMed ID: 38690610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower limb hyperthermia augments functional hyperaemia during small muscle mass exercise similarly in trained elderly and young humans.
    Koch Esteves N; Khir AW; González-Alonso J
    Exp Physiol; 2023 Sep; 108(9):1154-1171. PubMed ID: 37409754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow.
    Pearson J; Low DA; Stöhr E; Kalsi K; Ali L; Barker H; González-Alonso J
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R663-73. PubMed ID: 21178127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-haemodynamic coupling during regional thigh heating: Insight into the importance of local thermosensitive mechanisms in blood circulation.
    Koch Esteves N; McDonald J; González-Alonso J
    Exp Physiol; 2024 Apr; 109(4):600-613. PubMed ID: 38230961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature and blood flow distribution in the human leg during passive heat stress.
    Chiesa ST; Trangmar SJ; González-Alonso J
    J Appl Physiol (1985); 2016 May; 120(9):1047-58. PubMed ID: 26823344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of repeated, local heating-induced increases in blood flow on lower limb endothelial function in young, healthy females.
    McGarity-Shipley EC; Schmitter SM; Williams JS; King TJ; McPhee IAC; Pyke KE
    Eur J Appl Physiol; 2021 Nov; 121(11):3017-3030. PubMed ID: 34251539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood temperature and perfusion to exercising and non-exercising human limbs.
    González-Alonso J; Calbet JA; Boushel R; Helge JW; Søndergaard H; Munch-Andersen T; van Hall G; Mortensen SP; Secher NH
    Exp Physiol; 2015 Oct; 100(10):1118-31. PubMed ID: 26268717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg.
    Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS
    Exp Physiol; 2019 Oct; 104(10):1575-1584. PubMed ID: 31400019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.
    Romero SA; Gagnon D; Adams AN; Cramer MN; Kouda K; Crandall CG
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H89-H97. PubMed ID: 27836894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells.
    Kalsi KK; Chiesa ST; Trangmar SJ; Ali L; Lotlikar MD; González-Alonso J
    Exp Physiol; 2017 Feb; 102(2):228-244. PubMed ID: 27859767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The passive leg movement technique for assessing vascular function: the impact of baseline blood flow.
    Shields KL; Broxterman RM; Jarrett CL; Bisconti AV; Park SH; Richardson RS
    Exp Physiol; 2021 Oct; 106(10):2133-2147. PubMed ID: 34411365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of passive leg raising and hyperemia on macrovascular and microvascular responses.
    Bapat M; Musikantow D; Khmara K; Chokshi P; Khanna N; Galligan S; Kamran H; Salciccioli L; Barone FC; Lazar JM
    Microvasc Res; 2013 Mar; 86():30-3. PubMed ID: 23261755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.
    Messere A; Ceravolo G; Franco W; Maffiodo D; Ferraresi C; Roatta S
    J Appl Physiol (1985); 2017 Dec; 123(6):1451-1460. PubMed ID: 28819006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower leg high-intensity resistance training and peripheral hemodynamic adaptations.
    Bond V; Wang P; Adams RG; Johnson AT; Vaccaro P; Tearney RJ; Millis RM; Franks BD; Bassett DR
    Can J Appl Physiol; 1996 Jun; 21(3):209-17. PubMed ID: 8792025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of leg position on muscle blood flow and oxygenation during low-intensity rhythmic plantarflexion exercise.
    Marume K; Mugele H; Ueno R; Amin SB; Lesmana HS; Possnig C; Hansen AB; Simpson LL; Lawley JS
    Eur J Appl Physiol; 2023 May; 123(5):1091-1099. PubMed ID: 36645478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature.
    Walther G; Nottin S; Karpoff L; Pérez-Martin A; Dauzat M; Obert P
    Acta Physiol (Oxf); 2008 Jun; 193(2):139-50. PubMed ID: 18294338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.
    Sheldon RD; Roseguini BT; Thyfault JP; Crist BD; Laughlin MH; Newcomer SC
    J Appl Physiol (1985); 2012 Jun; 112(12):2099-109. PubMed ID: 22442025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.