These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 34350848)
1. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow. Tang G; Fu X; Wang Z; Chen M Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848 [TBL] [Abstract][Full Text] [Related]
2. Developing a Machine Learning Algorithm for Identifying Abnormal Urothelial Cells: A Feasibility Study. Zhang Z; Fu X; Liu J; Huang Z; Liu N; Fang F; Rao J Acta Cytol; 2021; 65(4):335-341. PubMed ID: 33022673 [TBL] [Abstract][Full Text] [Related]
3. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence. Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953 [TBL] [Abstract][Full Text] [Related]
4. Detection of Metastatic Tumor Cells in the Bone Marrow Aspirate Smears by Artificial Intelligence (AI)-Based Chen P; Chen Xu R; Chen N; Zhang L; Zhang L; Zhu J; Pan B; Wang B; Guo W Front Oncol; 2021; 11():742395. PubMed ID: 34646779 [TBL] [Abstract][Full Text] [Related]
5. New quantitative features for the morphological differentiation of abnormal lymphoid cell images from peripheral blood. Puigví L; Merino A; Alférez S; Acevedo A; Rodellar J J Clin Pathol; 2017 Dec; 70(12):1038-1048. PubMed ID: 28611188 [TBL] [Abstract][Full Text] [Related]
6. Characterization and automatic screening of reactive and abnormal neoplastic B lymphoid cells from peripheral blood. Alférez S; Merino A; Bigorra L; Rodellar J Int J Lab Hematol; 2016 Apr; 38(2):209-19. PubMed ID: 26995648 [TBL] [Abstract][Full Text] [Related]
7. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks. Wang X; Wang Y; Qi C; Qiao S; Yang S; Wang R; Jin H; Zhang J Technol Cancer Res Treat; 2023; 22():15330338221150069. PubMed ID: 36700246 [TBL] [Abstract][Full Text] [Related]
8. [Tumors of lymphoid and hematopoietic tissue of spleen: a clinicopathologic analysis of 53 cases]. Chen DB; Shen DH; Zhang H; Wang Y; Song QJ; Yang SM; Fang XZ Zhonghua Bing Li Xue Za Zhi; 2017 Nov; 46(11):775-781. PubMed ID: 29136691 [No Abstract] [Full Text] [Related]
9. Developing and Preliminary Validating an Automatic Cell Classification System for Bone Marrow Smears: a Pilot Study. Jin H; Fu X; Cao X; Sun M; Wang X; Zhong Y; Yang S; Qi C; Peng B; He X; He F; Jiang Y; Gao H; Li S; Huang Z; Li Q; Fang F; Zhang J J Med Syst; 2020 Sep; 44(10):184. PubMed ID: 32894360 [TBL] [Abstract][Full Text] [Related]
10. Lymphoma discrimination by computerized triple matrix analysis of list mode data from three-color flow cytometric immunophenotypes of bone marrow aspirates. Bartsch R; Arland M; Lange S; Kahl C; Valet G; Höffkes HG Cytometry; 2000 Sep; 41(1):9-18. PubMed ID: 10942891 [TBL] [Abstract][Full Text] [Related]
11. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. Chandradevan R; Aljudi AA; Drumheller BR; Kunananthaseelan N; Amgad M; Gutman DA; Cooper LAD; Jaye DL Lab Invest; 2020 Jan; 100(1):98-109. PubMed ID: 31570774 [TBL] [Abstract][Full Text] [Related]
12. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. William W; Ware A; Basaza-Ejiri AH; Obungoloch J Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423 [TBL] [Abstract][Full Text] [Related]
13. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. Boldú L; Merino A; Alférez S; Molina A; Acevedo A; Rodellar J J Clin Pathol; 2019 Nov; 72(11):755-761. PubMed ID: 31256009 [TBL] [Abstract][Full Text] [Related]
14. Lymphoma images analysis using morphological and non-morphological descriptors for classification. do Nascimento MZ; Martins AS; Azevedo Tosta TA; Neves LA Comput Methods Programs Biomed; 2018 Sep; 163():65-77. PubMed ID: 30119858 [TBL] [Abstract][Full Text] [Related]
15. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis. Chen P; Zhang L; Cao X; Jin X; Chen N; Zhang L; Zhu J; Pan B; Wang B; Guo W Cancer; 2024 May; 130(10):1884-1893. PubMed ID: 38236717 [TBL] [Abstract][Full Text] [Related]
16. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Achi HE; Belousova T; Chen L; Wahed A; Wang I; Hu Z; Kanaan Z; Rios A; Nguyen AND Ann Clin Lab Sci; 2019 Mar; 49(2):153-160. PubMed ID: 31028058 [TBL] [Abstract][Full Text] [Related]
17. Predictive value of blood and bone marrow flow cytometry in B-cell lymphoma classification: comparative analysis of flow cytometry and tissue biopsy in 252 patients. Morice WG; Kurtin PJ; Hodnefield JM; Shanafelt TD; Hoyer JD; Remstein ED; Hanson CA Mayo Clin Proc; 2008 Jul; 83(7):776-85. PubMed ID: 18613994 [TBL] [Abstract][Full Text] [Related]
18. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma. Miyoshi H; Sato K; Kabeya Y; Yonezawa S; Nakano H; Takeuchi Y; Ozawa I; Higo S; Yanagida E; Yamada K; Kohno K; Furuta T; Muta H; Takeuchi M; Sasaki Y; Yoshimura T; Matsuda K; Muto R; Moritsubo M; Inoue K; Suzuki T; Sekinaga H; Ohshima K Lab Invest; 2020 Oct; 100(10):1300-1310. PubMed ID: 32472096 [TBL] [Abstract][Full Text] [Related]
20. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system. Lv Z; Cao X; Jin X; Xu S; Deng H Sci Rep; 2023 Aug; 13(1):13364. PubMed ID: 37591969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]