BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34351145)

  • 1. Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying.
    Bahrami A; Ying P; Wolff U; Rodríguez NP; Schierning G; Nielsch K; He R
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38561-38568. PubMed ID: 34351145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content.
    Gong B; Li Y; Liu F; Zhu J; Wang X; Ao W; Zhang C; Li J; Xie H; Zhu T
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13397-13404. PubMed ID: 30883083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.
    Hu T; Yang D; Su X; Yan Y; You Y; Liu W; Uher C; Tang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):864-872. PubMed ID: 29236464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds.
    He R; Zhu T; Ying P; Chen J; Giebeler L; Kühn U; Grossman JC; Wang Y; Nielsch K
    Small; 2021 Aug; 17(33):e2102045. PubMed ID: 34235845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance.
    Johari KK; Sharma DK; Verma AK; Bhardwaj R; Chauhan NS; Kumar S; Singh MN; Bathula S; Gahtori B
    ACS Appl Mater Interfaces; 2022 May; 14(17):19579-19593. PubMed ID: 35442621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials.
    Li S; Zhu H; Mao J; Feng Z; Li X; Chen C; Cao F; Liu X; Singh DJ; Ren Z; Zhang Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41321-41329. PubMed ID: 31609575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing the Carrier Concentration of ZrNiSn: An Opposite Way to the Best N-Type Half-Heusler Thermoelectrics.
    Dong Z; Wang C; Chen J; Li Z; Dai S; Yan X; Zhang J; Yang J; Zhai Q; Luo J
    Small Methods; 2024 Jan; 8(1):e2300829. PubMed ID: 37728191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance.
    Dong J; Sun FH; Tang H; Hayashi K; Li H; Shang PP; Miyazaki Y; Li JF
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28221-28227. PubMed ID: 31305979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thermoelectric Performance of Zr
    Yang X; Jiang Z; Kang H; Chen Z; Guo E; Liu D; Yang F; Li R; Jiang X; Wang T
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3773-3783. PubMed ID: 31880427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong electron-phonon coupling and high lattice thermal conductivity in half-Heusler thermoelectric materials.
    Wang R; Cai J; Zhang Q; Tan X; Wu J; Liu G; Jiang J
    Phys Chem Chem Phys; 2024 Mar; 26(11):8932-8937. PubMed ID: 38433622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy of Extra Zr Doping on the Enhancement of Thermoelectric Performance for TiZr
    Chen JL; Yang H; Liu C; Liang J; Miao L; Zhang Z; Liu P; Yoshida K; Chen C; Zhang Q; Zhou Q; Liao Y; Wang P; Li Z; Peng B
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48801-48809. PubMed ID: 34618429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crucial Role of Ni Point Defects and Sb Doping for Tailoring the Thermoelectric Properties of ZrNiSn Half-Heusler Alloy: An Ab Initio Study.
    Ascrizzi E; Ribaldone C; Casassa S
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric properties, efficiency and thermal expansion of ZrNiSn half-Heusler by first-principles calculations.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32315993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced figure of merit in two-dimensional ZrNiSn nanosheets for thermoelectric applications.
    Monika S; Suganya G; Gokulsaswath V; Kalpana G
    Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38861969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi(1+x)Sn.
    Birkel CS; Douglas JE; Lettiere BR; Seward G; Verma N; Zhang Y; Pollock TM; Seshadri R; Stucky GD
    Phys Chem Chem Phys; 2013 May; 15(18):6990-7. PubMed ID: 23552642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Spark Plasma Sintering on the Structure and Properties of Ti
    Downie RA; Popuri SR; Ning H; Reece MJ; Bos JG
    Materials (Basel); 2014 Oct; 7(10):7093-7104. PubMed ID: 28788234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.
    Dow HS; Kim WS; Shin WH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary Ag
    Chen J; Yuan H; Zhu YK; Zheng K; Ge ZH; Tang J; Zhou D; Yang L; Chen ZG
    Inorg Chem; 2021 Sep; 60(18):14165-14173. PubMed ID: 34474565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Thermal Conductivity and Extraordinary Thermoelectric Performance Realized in Codoped Cu
    Li D; Ming HW; Li JM; Jabar B; Xu W; Zhang J; Qin XY
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3886-3892. PubMed ID: 31854185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.