BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34351540)

  • 1. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis.
    Sundararajan S; Muniyan R
    Mol Biol Rep; 2021 Aug; 48(8):6181-6196. PubMed ID: 34351540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality?
    Gupta VK; Kumar MM; Singh D; Bisht D; Sharma S
    Infect Dis (Lond); 2018 Feb; 50(2):81-94. PubMed ID: 28933243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors.
    Yang L; Hu X; Chai X; Ye Q; Pang J; Li D; Hou T
    Drug Discov Today; 2022 Jan; 27(1):326-336. PubMed ID: 34537334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent and dormant tubercle bacilli and latent tuberculosis.
    Zhang Y
    Front Biosci; 2004 May; 9():1136-56. PubMed ID: 14977534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis.
    Devi PB; Sridevi JP; Kakan SS; Saxena S; Jeankumar VU; Soni V; Anantaraju HS; Yogeeswari P; Sriram D
    Tuberculosis (Edinb); 2015 Dec; 95(6):786-794. PubMed ID: 26299907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Wall Associated Factors of Mycobacterium tuberculosis as Major Virulence Determinants: Current Perspectives in Drugs Discovery and Design.
    Singh G; Kumar A; Maan P; Kaur J
    Curr Drug Targets; 2017 Nov; 18(16):1904-1918. PubMed ID: 28699515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latent tuberculosis infection: what we know about its genetic control?
    Kondratieva T; Azhikina T; Nikonenko B; Kaprelyants A; Apt A
    Tuberculosis (Edinb); 2014 Sep; 94(5):462-8. PubMed ID: 25104213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of persisters in tuberculosis drug discovery: Exploring the potential of targeting the glyoxylate shunt pathway.
    Negi A; Sharma R
    Eur J Med Chem; 2024 Feb; 265():116058. PubMed ID: 38128237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of
    Khan MZ; Nandicoori VK
    Antimicrob Agents Chemother; 2021 Mar; 65(4):. PubMed ID: 33468473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.
    Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R
    Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected.
    Soto-Ramirez MD; Aguilar-Ayala DA; Garcia-Morales L; Rodriguez-Peredo SM; Badillo-Lopez C; Rios-Muñiz DE; Meza-Segura MA; Rivera-Morales GY; Leon-Solis L; Cerna-Cortes JF; Rivera-Gutierrez S; Helguera-Repetto AC; Gonzalez-Y-Merchand JA
    Tuberculosis (Edinb); 2017 Mar; 103():1-9. PubMed ID: 28237027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of new antituberculous drugs based on bacterial virulence factors interfering with host cytokine networks.
    Tomioka H; Tatano Y; Sano C; Shimizu T
    J Infect Chemother; 2011 Jun; 17(3):302-17. PubMed ID: 21243398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis.
    Defelipe LA; Do Porto DF; Pereira Ramos PI; Nicolás MF; Sosa E; Radusky L; Lanzarotti E; Turjanski AG; Marti MA
    Tuberculosis (Edinb); 2016 Mar; 97():181-92. PubMed ID: 26791267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research.
    Dedieu L; Serveau-Avesque C; Kremer L; Canaan S
    Biochimie; 2013 Jan; 95(1):66-73. PubMed ID: 22819994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance.
    Miryala SK; Anbarasu A; Ramaiah S
    J Cell Biochem; 2019 Sep; 120(9):14499-14509. PubMed ID: 30989745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.