These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34351540)

  • 21. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New 1-hydroxy-2-thiopyridine derivatives active against both replicating and dormant Mycobacterium tuberculosis.
    Salina EG; Ryabova O; Vocat A; Nikonenko B; Cole ST; Makarov V
    J Infect Chemother; 2017 Nov; 23(11):794-797. PubMed ID: 28527650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antituberculous drugs modulate bacterial phagolysosome avoidance and autophagy in Mycobacterium tuberculosis-infected macrophages.
    Genestet C; Bernard-Barret F; Hodille E; Ginevra C; Ader F; Goutelle S; Lina G; Dumitrescu O;
    Tuberculosis (Edinb); 2018 Jul; 111():67-70. PubMed ID: 30029917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guanosine triphosphatases as novel therapeutic targets in tuberculosis.
    Rajni ; Meena LS
    Int J Infect Dis; 2010 Aug; 14(8):e682-7. PubMed ID: 20207570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The polyphosphate kinase gene ppk2 is required for Mycobacterium tuberculosis inorganic polyphosphate regulation and virulence.
    Chuang YM; Belchis DA; Karakousis PC
    mBio; 2013 May; 4(3):e00039-13. PubMed ID: 23695835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4404-17. PubMed ID: 24245765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
    Mukhopadhyay S; Nair S; Ghosh S
    FEMS Microbiol Rev; 2012 Mar; 36(2):463-85. PubMed ID: 22092372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of ABCG2 efflux pumps renders the Mycobacterium tuberculosis hiding in mesenchymal stem cells responsive to antibiotic treatment.
    Kaur S; Angrish N; Gupta K; Tyagi AK; Khare G
    Infect Genet Evol; 2021 Jan; 87():104662. PubMed ID: 33278633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection.
    Marimani M; Ahmad A; Duse A
    Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.
    Liu Y; Zhou S; Deng Q; Li X; Meng J; Guan Y; Li C; Xiao C
    Tuberculosis (Edinb); 2016 Mar; 97():38-46. PubMed ID: 26980494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development.
    Chae H; Shin SJ
    J Microbiol; 2018 May; 56(5):300-311. PubMed ID: 29721826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host-pathogen interactions in latent Mycobacterium tuberculosis infection: identification of new targets for tuberculosis intervention.
    Lin MY; Ottenhoff TH
    Endocr Metab Immune Disord Drug Targets; 2008 Mar; 8(1):15-29. PubMed ID: 18393920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Something Old, Something New: Ion Channel Blockers as Potential Anti-Tuberculosis Agents.
    Mitini-Nkhoma SC; Chimbayo ET; Mzinza DT; Mhango DV; Chirambo AP; Mandalasi C; Lakudzala AE; Tembo DL; Jambo KC; Mwandumba HC
    Front Immunol; 2021; 12():665785. PubMed ID: 34248944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human gene expression profiling identifies key therapeutic targets in tuberculosis infection: A systematic network meta-analysis.
    Alam A; Imam N; Siddiqui MF; Ali MK; Ahmed MM; Ishrat R
    Infect Genet Evol; 2021 Jan; 87():104649. PubMed ID: 33271338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of Type-I Mycobacterium tuberculosis fatty acid synthase at 3.3 Å resolution.
    Elad N; Baron S; Peleg Y; Albeck S; Grunwald J; Raviv G; Shakked Z; Zimhony O; Diskin R
    Nat Commun; 2018 Sep; 9(1):3886. PubMed ID: 30250274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dormancy models for Mycobacterium tuberculosis: A minireview.
    Alnimr AM
    Braz J Microbiol; 2015; 46(3):641-7. PubMed ID: 26413043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycobacterium tuberculosis: Surviving and Indulging in an Unwelcoming Host.
    Mishra A; Surolia A
    IUBMB Life; 2018 Sep; 70(9):917-925. PubMed ID: 30129097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.
    Salaemae W; Booker GW; Polyak SW
    Microbiol Spectr; 2016 Apr; 4(2):. PubMed ID: 27227307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.