These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 34351748)
1. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. Wei C; Tan L; Zhang Y; Zhang K; Xi B; Xiong S; Feng J; Qian Y ACS Nano; 2021 Aug; 15(8):12741-12767. PubMed ID: 34351748 [TBL] [Abstract][Full Text] [Related]
2. A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries. Zhao Y; Feng K; Yu Y Adv Sci (Weinh); 2024 Feb; 11(7):e2308087. PubMed ID: 38063856 [TBL] [Abstract][Full Text] [Related]
3. Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries. Sun J; Kang F; Yan D; Ding T; Wang Y; Zhou X; Zhang Q Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202406511. PubMed ID: 38712899 [TBL] [Abstract][Full Text] [Related]
4. Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Shi R; Shen Z; Yue Q; Zhao Y Nanoscale; 2023 Jun; 15(21):9256-9289. PubMed ID: 37159004 [TBL] [Abstract][Full Text] [Related]
5. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556 [TBL] [Abstract][Full Text] [Related]
6. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Zhang X; Wang A; Liu X; Luo J Acc Chem Res; 2019 Nov; 52(11):3223-3232. PubMed ID: 31657541 [TBL] [Abstract][Full Text] [Related]
7. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries. Sun B; Li P; Zhang J; Wang D; Munroe P; Wang C; Notten PHL; Wang G Adv Mater; 2018 May; ():e1801334. PubMed ID: 29855109 [TBL] [Abstract][Full Text] [Related]
8. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Yang C; Fu K; Zhang Y; Hitz E; Hu L Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318 [TBL] [Abstract][Full Text] [Related]
9. Distributed Li-Ion Flux Enabled by Sulfonated Covalent Organic Frameworks for High-Performance Lithium Metal Anodes. Han D; Yang X; Li K; Sun L; Hou T; Zhang L; Sun Y; Zhai L; Mi L Macromol Rapid Commun; 2023 Apr; 44(7):e2200803. PubMed ID: 36519731 [TBL] [Abstract][Full Text] [Related]
10. Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies. Hoang Huy VP; Hieu LT; Hur J Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685186 [TBL] [Abstract][Full Text] [Related]
11. Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures. Zhang X; Zhang L; Jia X; Song W; Liu Y Nanomicro Lett; 2024 Jan; 16(1):75. PubMed ID: 38175454 [TBL] [Abstract][Full Text] [Related]
12. A strategy for anode modification for future zinc-based battery application. Zhou LF; Du T; Li JY; Wang YS; Gong H; Yang QR; Chen H; Luo WB; Wang JZ Mater Horiz; 2022 Oct; 9(11):2722-2751. PubMed ID: 36196916 [TBL] [Abstract][Full Text] [Related]
13. A Novel Organic "Polyurea" Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition. Sun Y; Zhao Y; Wang J; Liang J; Wang C; Sun Q; Lin X; Adair KR; Luo J; Wang D; Li R; Cai M; Sham TK; Sun X Adv Mater; 2019 Jan; 31(4):e1806541. PubMed ID: 30515896 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. Zhang L; Zhang X; Han D; Zhai L; Mi L Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245 [TBL] [Abstract][Full Text] [Related]
15. Search for New Anode Materials for High Performance Li-Ion Batteries. Roy K; Banerjee A; Ogale S ACS Appl Mater Interfaces; 2022 May; 14(18):20326-20348. PubMed ID: 35413183 [TBL] [Abstract][Full Text] [Related]
16. Olefin-Linked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes. Li Z; Sun L; Zhai L; Oh KS; Seo JM; Li C; Han D; Baek JB; Lee SY Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202307459. PubMed ID: 37488979 [TBL] [Abstract][Full Text] [Related]
17. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999 [TBL] [Abstract][Full Text] [Related]
18. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries. Patrike A; Yadav P; Shelke V; Shelke M ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981 [TBL] [Abstract][Full Text] [Related]
19. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Zhang R; Chen XR; Chen X; Cheng XB; Zhang XQ; Yan C; Zhang Q Angew Chem Int Ed Engl; 2017 Jun; 56(27):7764-7768. PubMed ID: 28466583 [TBL] [Abstract][Full Text] [Related]
20. Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries. Xue J; Sun Z; Sun B; Zhao C; Yang Y; Huo F; Cabot A; Liu HK; Dou S ACS Nano; 2024 Jul; 18(27):17439-17468. PubMed ID: 38934250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]