BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34351792)

  • 1. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses.
    Sogin EM; Kleiner M; Borowski C; Gruber-Vodicka HR; Dubilier N
    Annu Rev Microbiol; 2021 Oct; 75():695-718. PubMed ID: 34351792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemosynthetic symbioses.
    Sogin EM; Leisch N; Dubilier N
    Curr Biol; 2020 Oct; 30(19):R1137-R1142. PubMed ID: 33022256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves.
    Roeselers G; Newton IL
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):1-10. PubMed ID: 22354364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis.
    Dubilier N; Bergin C; Lott C
    Nat Rev Microbiol; 2008 Oct; 6(10):725-40. PubMed ID: 18794911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California.
    Goffredi SK; Motooka C; Fike DA; Gusmão LC; Tilic E; Rouse GW; Rodríguez E
    BMC Biol; 2021 Jan; 19(1):8. PubMed ID: 33455582
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Sudo M; Osvatic J; Taylor JD; Dufour SC; Prathep A; Wilkins LGE; Rattei T; Yuen B; Petersen JM
    mSystems; 2024 Jun; 9(6):e0113523. PubMed ID: 38747602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc.
    Breusing C; Klobusnik NH; Hauer MA; Beinart RA
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35997584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation.
    Breusing C; Xiao Y; Russell SL; Corbett-Detig RB; Li S; Sun J; Chen C; Lan Y; Qian PY; Beinart RA
    mSystems; 2023 Aug; 8(4):e0028423. PubMed ID: 37493648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally.
    Dick GJ
    Nat Rev Microbiol; 2019 May; 17(5):271-283. PubMed ID: 30867583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents.
    Ho PT; Park E; Hong SG; Kim EH; Kim K; Jang SJ; Vrijenhoek RC; Won YJ
    BMC Evol Biol; 2017 May; 17(1):121. PubMed ID: 28558648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals.
    Petersen JM; Wentrup C; Verna C; Knittel K; Dubilier N
    Biol Bull; 2012 Aug; 223(1):123-37. PubMed ID: 22983038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces.
    Stewart FJ; Newton IL; Cavanaugh CM
    Trends Microbiol; 2005 Sep; 13(9):439-48. PubMed ID: 16054816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails.
    Breusing C; Mitchell J; Delaney J; Sylva SP; Seewald JS; Girguis PR; Beinart RA
    ISME J; 2020 Oct; 14(10):2568-2579. PubMed ID: 32616905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis.
    Osvatic JT; Yuen B; Kunert M; Wilkins L; Hausmann B; Girguis P; Lundin K; Taylor J; Jospin G; Petersen JM
    ISME J; 2023 Mar; 17(3):453-466. PubMed ID: 36639537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses.
    Beinart RA; Gartman A; Sanders JG; Luther GW; Girguis PR
    Proc Biol Sci; 2015 May; 282(1806):20142811. PubMed ID: 25876848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen is an energy source for hydrothermal vent symbioses.
    Petersen JM; Zielinski FU; Pape T; Seifert R; Moraru C; Amann R; Hourdez S; Girguis PR; Wankel SD; Barbe V; Pelletier E; Fink D; Borowski C; Bach W; Dubilier N
    Nature; 2011 Aug; 476(7359):176-80. PubMed ID: 21833083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global 16S rRNA diversity of provannid snail endosymbionts from Indo-Pacific deep-sea hydrothermal vents.
    Breusing C; Castel J; Yang Y; Broquet T; Sun J; Jollivet D; Qian PY; Beinart RA
    Environ Microbiol Rep; 2022 Apr; 14(2):299-307. PubMed ID: 35170217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses.
    Breusing C; Genetti M; Russell SL; Corbett-Detig RB; Beinart RA
    Proc Natl Acad Sci U S A; 2022 Apr; 119(14):e2115608119. PubMed ID: 35349333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae).
    DeChaine EG; Cavanaugh CM
    Prog Mol Subcell Biol; 2006; 41():227-49. PubMed ID: 16623396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.