These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 34351929)
1. Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host immune genes and full virulence. Werner BT; Koch A; Šečić E; Engelhardt J; Jelonek L; Steinbrenner J; Kogel KH PLoS One; 2021; 16(8):e0252365. PubMed ID: 34351929 [TBL] [Abstract][Full Text] [Related]
2. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Piombo E; Vetukuri RR; Broberg A; Kalyandurg PB; Kushwaha S; Funck Jensen D; Karlsson M; Dubey M Microbiol Spectr; 2021 Oct; 9(2):e0109921. PubMed ID: 34549988 [TBL] [Abstract][Full Text] [Related]
3. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. Hunt M; Banerjee S; Surana P; Liu M; Fuerst G; Mathioni S; Meyers BC; Nettleton D; Wise RP BMC Genomics; 2019 Jul; 20(1):610. PubMed ID: 31345162 [TBL] [Abstract][Full Text] [Related]
4. Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Zanini S; Šečić E; Busche T; Galli M; Zheng Y; Kalinowski J; Kogel KH Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440747 [TBL] [Abstract][Full Text] [Related]
5. Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. Pasquet JC; Chaouch S; Macadré C; Balzergue S; Huguet S; Martin-Magniette ML; Bellvert F; Deguercy X; Thareau V; Heintz D; Saindrenan P; Dufresne M BMC Genomics; 2014 Jul; 15(1):629. PubMed ID: 25063396 [TBL] [Abstract][Full Text] [Related]
6. Identification of regulated proteins in naked barley grains (Hordeum vulgare nudum) after Fusarium graminearum infection at different grain ripening stages. Trümper C; Paffenholz K; Smit I; Kössler P; Karlovsky P; Braun HP; Pawelzik E J Proteomics; 2016 Feb; 133():86-92. PubMed ID: 26612662 [TBL] [Abstract][Full Text] [Related]
7. A Highly Efficient and Reproducible Fusarium spp. Inoculation Method for Brachypodium distachyon. Rana A; Karunakaran A; Fitzgerald TL; Sabburg R; Aitken EAB; Henry RJ; Powell JJ; Kazan K Methods Mol Biol; 2018; 1667():43-55. PubMed ID: 29039002 [TBL] [Abstract][Full Text] [Related]
8. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Ding Y; Gardiner DM; Powell JJ; Colgrave ML; Park RF; Kazan K Plant Cell Environ; 2021 Dec; 44(12):3526-3544. PubMed ID: 34591319 [TBL] [Abstract][Full Text] [Related]
9. RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Jeseničnik T; Štajner N; Radišek S; Jakše J Sci Rep; 2019 Jun; 9(1):8651. PubMed ID: 31209232 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens. Zhu G; Gao C; Wu C; Li M; Xu JR; Liu H; Wang Q BMC Plant Biol; 2021 Jun; 21(1):304. PubMed ID: 34193039 [TBL] [Abstract][Full Text] [Related]
11. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Weiberg A; Wang M; Lin FM; Zhao H; Zhang Z; Kaloshian I; Huang HD; Jin H Science; 2013 Oct; 342(6154):118-23. PubMed ID: 24092744 [TBL] [Abstract][Full Text] [Related]
12. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections. Yu J; Lee KM; Cho WK; Park JY; Kim KH J Virol; 2018 May; 92(9):. PubMed ID: 29437977 [TBL] [Abstract][Full Text] [Related]
13. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen Gaffar FY; Imani J; Karlovsky P; Koch A; Kogel KH Front Microbiol; 2019; 10():1662. PubMed ID: 31616385 [TBL] [Abstract][Full Text] [Related]
14. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Wang M; Weiberg A; Lin FM; Thomma BP; Huang HD; Jin H Nat Plants; 2016 Sep; 2():16151. PubMed ID: 27643635 [TBL] [Abstract][Full Text] [Related]
15. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Cai Q; Qiao L; Wang M; He B; Lin FM; Palmquist J; Huang SD; Jin H Science; 2018 Jun; 360(6393):1126-1129. PubMed ID: 29773668 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of the barley-Fusarium graminearum interaction. Boddu J; Cho S; Kruger WM; Muehlbauer GJ Mol Plant Microbe Interact; 2006 Apr; 19(4):407-17. PubMed ID: 16610744 [TBL] [Abstract][Full Text] [Related]
17. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. Koch A; Höfle L; Werner BT; Imani J; Schmidt A; Jelonek L; Kogel KH Mol Plant Pathol; 2019 Dec; 20(12):1636-1644. PubMed ID: 31603277 [TBL] [Abstract][Full Text] [Related]
18. Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection. Åsman AK; Vetukuri RR; Jahan SN; Fogelqvist J; Corcoran P; Avrova AO; Whisson SC; Dixelius C BMC Microbiol; 2014 Dec; 14():308. PubMed ID: 25492044 [TBL] [Abstract][Full Text] [Related]
19. Silencing Dicer-Like Genes Reduces Virulence and sRNA Generation in Yin C; Zhu H; Jiang Y; Shan Y; Gong L Cells; 2020 Feb; 9(2):. PubMed ID: 32033176 [TBL] [Abstract][Full Text] [Related]
20. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. Lu S; Edwards MC Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]