These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 34352252)
1. αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability. Hale J; An X; Guo X; Gao E; Papoin J; Blanc L; Hillyer CD; Gratzer W; Baines A; Mohandas N Biophys J; 2021 Sep; 120(17):3588-3599. PubMed ID: 34352252 [TBL] [Abstract][Full Text] [Related]
2. Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. Salomao M; An X; Guo X; Gratzer WB; Mohandas N; Baines AJ Proc Natl Acad Sci U S A; 2006 Jan; 103(3):643-8. PubMed ID: 16407147 [TBL] [Abstract][Full Text] [Related]
3. Dependence of the permanent deformation of red blood cell membranes on spectrin dimer-tetramer equilibrium: implication for permanent membrane deformation of irreversibly sickled cells. Liu SC; Derick LH; Palek J Blood; 1993 Jan; 81(2):522-8. PubMed ID: 8422468 [TBL] [Abstract][Full Text] [Related]
4. Monoclonal antibodies to alphaI spectrin Src homology 3 domain associate with macropinocytic vesicles in nonerythroid cells. Xu J; Ziemnicka D; Scalia J; Kotula L Brain Res; 2001 Apr; 898(1):171-7. PubMed ID: 11292462 [TBL] [Abstract][Full Text] [Related]
5. Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. Bignone PA; Baines AJ Biochem J; 2003 Sep; 374(Pt 3):613-24. PubMed ID: 12820899 [TBL] [Abstract][Full Text] [Related]
6. Evolution of spectrin function in cytoskeletal and membrane networks. Baines AJ Biochem Soc Trans; 2009 Aug; 37(Pt 4):796-803. PubMed ID: 19614597 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of the alpha N-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Mehboob S; Jacob J; May M; Kotula L; Thiyagarajan P; Johnson ME; Fung LW Biochemistry; 2003 Dec; 42(49):14702-10. PubMed ID: 14661984 [TBL] [Abstract][Full Text] [Related]
8. Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance. Li Q; Fung LW Biochemistry; 2009 Jan; 48(1):206-15. PubMed ID: 19072330 [TBL] [Abstract][Full Text] [Related]
9. Prenatal diagnosis of hereditary elliptocytosis with molecular defect of spectrin. Dhermy D; Feo C; Garbarz M; Lecomte MC; Bournier O; Chaveroche I; Gautero H; Boivin P; Daffos F; Forestier F Prenat Diagn; 1987 Sep; 7(7):471-83. PubMed ID: 3671334 [TBL] [Abstract][Full Text] [Related]
10. Mutations in the murine erythroid alpha-spectrin gene alter spectrin mRNA and protein levels and spectrin incorporation into the red blood cell membrane skeleton. Wandersee NJ; Birkenmeier CS; Bodine DM; Mohandas N; Barker JE Blood; 2003 Jan; 101(1):325-30. PubMed ID: 12393645 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. Mehboob S; Song Y; Witek M; Long F; Santarsiero BD; Johnson ME; Fung LW J Biol Chem; 2010 May; 285(19):14572-84. PubMed ID: 20228407 [TBL] [Abstract][Full Text] [Related]
12. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. Ziemnicka-Kotula D; Xu J; Gu H; Potempska A; Kim KS; Jenkins EC; Trenkner E; Kotula L J Biol Chem; 1998 May; 273(22):13681-92. PubMed ID: 9593709 [TBL] [Abstract][Full Text] [Related]
13. Spectrin, red cell shape and deformability. II. The antagonistic action of spectrin and sialic acid residues in determining membrane curvature in genetic spectrin deficiency in mice. Schmid-Schönbein H; Heidtmann H; Grebe R Blut; 1986 Mar; 52(3):149-64. PubMed ID: 3633744 [TBL] [Abstract][Full Text] [Related]
15. Alteration Young's moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes. Tang F; Lei X; Xiong Y; Wang R; Mao J; Wang X J Biomech; 2014 Oct; 47(13):3400-7. PubMed ID: 25242130 [TBL] [Abstract][Full Text] [Related]
16. Segmental flexibility of spectrin reflects erythrocyte membrane deformability. Ivanov IT; Paarvanova BK Gen Physiol Biophys; 2022 Mar; 41(2):87-100. PubMed ID: 35416172 [TBL] [Abstract][Full Text] [Related]
17. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching. Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179 [TBL] [Abstract][Full Text] [Related]
18. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642 [TBL] [Abstract][Full Text] [Related]
19. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Song Y; Antoniou C; Memic A; Kay BK; Fung LW Protein Sci; 2011 May; 20(5):867-79. PubMed ID: 21412925 [TBL] [Abstract][Full Text] [Related]
20. Effect of anti-spectrin antibody and ATP on deformability of resealed erythrocyte membranes. Nakashima K; Beutler E Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3823-5. PubMed ID: 278995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]