BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 34352272)

  • 1. Structural and functional interactions between the Ca
    Chirasani VR; Pasek DA; Meissner G
    J Biol Chem; 2021 Sep; 297(3):101040. PubMed ID: 34352272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A central core disease mutation in the Ca
    Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca
    Xu L; Chirasani VR; Carter JS; Pasek DA; Dokholyan NV; Yamaguchi N; Meissner G
    J Biol Chem; 2018 Dec; 293(50):19501-19509. PubMed ID: 30341173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of small molecule modulators on ATP binding to skeletal ryanodine receptor.
    Dias JM; Vogel PD
    Protein J; 2009 Jun; 28(5):240-6. PubMed ID: 19636685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1).
    Du GG; Oyamada H; Khanna VK; MacLennan DH
    Biochem J; 2001 Nov; 360(Pt 1):97-105. PubMed ID: 11695996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca
    Xu L; Mowrey DD; Chirasani VR; Wang Y; Pasek DA; Dokholyan NV; Meissner G
    J Biol Chem; 2018 Feb; 293(6):2015-2028. PubMed ID: 29255089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping co-regulatory interactions among ligand-binding sites in ryanodine receptor 1.
    Chirasani VR; Popov KI; Meissner G; Dokholyan NV
    Proteins; 2022 Feb; 90(2):385-394. PubMed ID: 34455637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of Zn
    Taweechat P; Boonamnaj P; Samsó M; Sompornpisut P
    J Phys Chem B; 2024 May; 128(19):4670-4684. PubMed ID: 38717304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors).
    Du GG; MacLennan DH
    J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.
    Mei Y; Xu L; Mowrey DD; Mendez Giraldez R; Wang Y; Pasek DA; Dokholyan NV; Meissner G
    J Biol Chem; 2015 Jul; 290(28):17535-45. PubMed ID: 25998124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives.
    Cholak S; Saville JW; Zhu X; Berezuk AM; Tuttle KS; Haji-Ghassemi O; Alvarado FJ; Van Petegem F; Subramaniam S
    Structure; 2023 Jul; 31(7):790-800.e4. PubMed ID: 37192614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor.
    Hayek SM; Zhu X; Bhat MB; Zhao J; Takeshima H; Valdivia HH; Ma J
    Biochem J; 2000 Oct; 351(Pt 1):57-65. PubMed ID: 10998347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RyR1-related myopathy mutations in ATP and calcium binding sites impair channel regulation.
    Yuan Q; Dridi H; Clarke OB; Reiken S; Melville Z; Wronska A; Kushnir A; Zalk R; Sittenfeld L; Marks AR
    Acta Neuropathol Commun; 2021 Nov; 9(1):186. PubMed ID: 34809703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-pulling simulations provide insights into the mechanisms of channel opening of the skeletal muscle ryanodine receptor.
    Mowrey DD; Xu L; Mei Y; Pasek DA; Meissner G; Dokholyan NV
    J Biol Chem; 2017 Aug; 292(31):12947-12958. PubMed ID: 28584051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability.
    Guo W; Sun B; Estillore JP; Wang R; Chen SRW
    J Biol Chem; 2020 Nov; 295(46):15622-15635. PubMed ID: 32878990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP.
    Diaz-Sylvester PL; Porta M; Copello JA
    Am J Physiol Cell Physiol; 2008 Apr; 294(4):C1103-12. PubMed ID: 18305228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile.
    Jiang J; Zhou Y; Zou J; Chen Y; Patel P; Yang JJ; Balog EM
    Biochem J; 2010 Nov; 432(1):89-99. PubMed ID: 20815817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dampened activity of ryanodine receptor channels in mutant skeletal muscle lacking TRIC-A.
    El-Ajouz S; Venturi E; Witschas K; Beech M; Wilson AD; Lindsay C; Eberhardt D; O'Brien F; Iida T; Nishi M; Takeshima H; Sitsapesan R
    J Physiol; 2017 Jul; 595(14):4769-4784. PubMed ID: 28387457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating dual Ca
    Zheng W; Wen H
    Proteins; 2020 Nov; 88(11):1528-1539. PubMed ID: 32557910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.
    Fessenden JD; Feng W; Pessah IN; Allen PD
    J Biol Chem; 2004 Dec; 279(51):53028-35. PubMed ID: 15469935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.