BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34352300)

  • 1. Transcriptional profiling of buffalo mammary gland with different milk fat contents.
    Hao M; Jiang J; Zhang Y; Wang S; Fu G; Zou F; Xie Y; Zhao S; Li W
    Gene; 2021 Nov; 802():145864. PubMed ID: 34352300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the transcriptome of prepubertal buffalo mammary glands using RNA sequencing.
    Choudhary RK; Choudhary S; Mukhopadhyay CS; Pathak D; Verma R
    Funct Integr Genomics; 2019 Mar; 19(2):349-362. PubMed ID: 30467802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxisome proliferator-activated receptor gamma regulates genes involved in milk fat synthesis in mammary epithelial cells of water buffalo.
    Zhou F; Ouyang Y; Miao Y
    Anim Sci J; 2021; 92(1):e13537. PubMed ID: 33682250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milk fat globule is an alternative to mammary epithelial cells for gene expression analysis in buffalo.
    Chen Q; Wu Y; Zhang M; Xu W; Guo X; Yan X; Deng H; Jiang Q; Yang X; Lan G; Guo Y; Qin G; Jiang H
    J Dairy Res; 2016 May; 83(2):202-8. PubMed ID: 27032540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer.
    Jena MK; Janjanam J; Naru J; Kumar S; Kumar S; Singh S; Mohapatra SK; Kola S; Anand V; Jaswal S; Verma AK; Malakar D; Dang AK; Kaushik JK; Reddy VS; Mohanty AK
    J Proteomics; 2015 Apr; 119():100-11. PubMed ID: 25661041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo.
    Yadav P; Kumar P; Mukesh M; Kataria RS; Yadav A; Mohanty AK; Mishra BP
    Res Vet Sci; 2015 Apr; 99():129-36. PubMed ID: 25660400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing.
    Cui X; Hou Y; Yang S; Xie Y; Zhang S; Zhang Y; Zhang Q; Lu X; Liu GE; Sun D
    BMC Genomics; 2014 Mar; 15():226. PubMed ID: 24655368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid biosynthesis and transcriptional regulation of Stearoyl-CoA Desaturase 1 (SCD1) in buffalo milk.
    Li Z; Lu S; Cui K; Shafique L; Rehman SU; Luo C; Wang Z; Ruan J; Qian Q; Liu Q
    BMC Genet; 2020 Mar; 21(1):23. PubMed ID: 32122301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, characterization, and SREBP1 functional analysis of mammary epithelial cell in buffalo.
    Xu W; Chen Q; Jia Y; Deng J; Jiang S; Qin G; Qiu Q; Wang X; Yang X; Jiang H
    J Food Biochem; 2019 Nov; 43(11):e12997. PubMed ID: 31373025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-quantitative RT-PCR analysis of fat metabolism genes in mammary tissue of lactating and non-lactating water buffalo (Bubalus bubalis).
    Yadav P; Mukesh M; Kataria RS; Yadav A; Mohanty AK; Mishra BP
    Trop Anim Health Prod; 2012 Apr; 44(4):693-6. PubMed ID: 21965031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LPIN1 promotes triglycerides synthesis and is transcriptionally regulated by PPARG in buffalo mammary epithelial cells.
    Zhou F; Fan X; Miao Y
    Sci Rep; 2022 Feb; 12(1):2390. PubMed ID: 35149744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of
    Fan X; Qiu L; Teng X; Zhang Y; Miao Y
    J Dairy Res; 2020 Aug; 87(3):349-355. PubMed ID: 32907640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells.
    Li R; Dudemaine PL; Zhao X; Lei C; Ibeagha-Awemu EM
    PLoS One; 2016; 11(4):e0154129. PubMed ID: 27100870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and analysis of the expression of microRNA from lactating and nonlactating mammary glands of the Chinese swamp buffalo.
    Cai X; Liu Q; Zhang X; Ren Y; Lei X; Li S; Chen Q; Deng K; Wang P; Zhang H; Shi D
    J Dairy Sci; 2017 Mar; 100(3):1971-1986. PubMed ID: 28109598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix-based three-dimensional culture of buffalo mammary epithelial cells showed higher induction of genes related to milk protein and fatty acid metabolism.
    Shandilya UK; Sharma A; Sodhi M; Kapila N; Kishore A; Mohanty A; Kataria R; Malakar D; Mukesh M
    Cell Biol Int; 2016 Feb; 40(2):232-8. PubMed ID: 26503422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation.
    Arora R; Sharma A; Sharma U; Girdhar Y; Kaur M; Kapoor P; Ahlawat S; Vijh RK
    Sci Rep; 2019 Apr; 9(1):5993. PubMed ID: 30979954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrigenomic Role of Acetate and β-Hydroxybutyrate in Bovine Mammary Epithelial Cells.
    Song S; Jiang M; Zhou J; Zhao F; Hou X; Lin Y
    DNA Cell Biol; 2020 Mar; 39(3):389-397. PubMed ID: 31905020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis).
    Du C; Deng TX; Zhou Y; Ghanem N; Hua GH
    Trop Anim Health Prod; 2020 Jan; 52(1):63-69. PubMed ID: 31321660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows.
    Billa PA; Faulconnier Y; Ye T; Chervet M; Le Provost F; Pires JAA; Leroux C
    BMC Genomics; 2019 Jul; 20(1):621. PubMed ID: 31362707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different model diets on milk composition and expression of genes related to fatty acid synthesis in the mammary gland of lactating dairy goats.
    Zhang H; Ao CJ; Khas-Erdene ; Song LW; Zhang XF
    J Dairy Sci; 2015 Jul; 98(7):4619-28. PubMed ID: 25981073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.