These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34352317)
1. Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. Serra-Parareda F; Tarrés Q; Mutjé P; Balea A; Campano C; Sánchez-Salvador JL; Negro C; Delgado-Aguilar M Int J Biol Macromol; 2021 Sep; 187():789-799. PubMed ID: 34352317 [TBL] [Abstract][Full Text] [Related]
2. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. Pakutsah K; Aht-Ong D Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270 [TBL] [Abstract][Full Text] [Related]
4. Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. Sanchez-Salvador JL; Campano C; Balea A; Tarrés Q; Delgado-Aguilar M; Mutjé P; Blanco A; Negro C Int J Biol Macromol; 2022 Apr; 205():220-230. PubMed ID: 35182566 [TBL] [Abstract][Full Text] [Related]
5. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Nechyporchuk O; Belgacem MN; Pignon F Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523 [TBL] [Abstract][Full Text] [Related]
6. Monitoring fibrillation in the mechanical production of lignocellulosic micro/nanofibers from bleached spruce thermomechanical pulp. Serra-Parareda F; Tarrés Q; Pèlach MÀ; Mutjé P; Balea A; Monte MC; Negro C; Delgado-Aguilar M Int J Biol Macromol; 2021 May; 178():354-362. PubMed ID: 33652049 [TBL] [Abstract][Full Text] [Related]
7. Influence of dispersion of fibrillated cellulose on the reinforcement of coated papers. Sanchez-Salvador JL; Rasteiro MG; Balea A; Sharma M; Pedrosa JFS; Negro C; Monte MC; Blanco A; Ferreira PJT Int J Biol Macromol; 2023 Sep; 248():125886. PubMed ID: 37481180 [TBL] [Abstract][Full Text] [Related]
8. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516 [TBL] [Abstract][Full Text] [Related]
9. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment. Wang X; Zeng J; Zhu JY Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020 [TBL] [Abstract][Full Text] [Related]
10. Rheological and physical properties of gelatin suspensions containing cellulose nanofibers for potential coatings. Andrade RD; Skurtys O; Osorio F; Zuluaga R; Gañán P; Castro C Food Sci Technol Int; 2015 Jul; 21(5):332-41. PubMed ID: 24831643 [TBL] [Abstract][Full Text] [Related]
11. Effect of Oxalic Acid Concentration and Different Mechanical Pre-Treatments on the Production of Cellulose Micro/Nanofibers. Bastida GA; Schnell CN; Mocchiutti P; Solier YN; Inalbon MC; Zanuttini MÁ; Galván MV Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079947 [TBL] [Abstract][Full Text] [Related]
12. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170 [TBL] [Abstract][Full Text] [Related]
13. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Nechyporchuk O; Belgacem MN; Pignon F Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764 [TBL] [Abstract][Full Text] [Related]
14. Rheological modification of partially oxidised cellulose nanofibril gels with inorganic clays. Bryant SJ; Calabrese V; da Silva MA; Zakir Hossain KM; Scott JL; Edler KJ PLoS One; 2021; 16(7):e0252660. PubMed ID: 34234363 [TBL] [Abstract][Full Text] [Related]
15. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692 [TBL] [Abstract][Full Text] [Related]
16. Rheology of regenerated cellulose suspension and influence of sodium alginate. Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069 [TBL] [Abstract][Full Text] [Related]
17. Oxidized cellulose nanofibers from sugarcane bagasse obtained by microfluidization: Morphology and rheological behavior. Carneiro Pessan C; Silva Bernardes J; Bettini SHP; Leite ER Carbohydr Polym; 2023 Mar; 304():120505. PubMed ID: 36641171 [TBL] [Abstract][Full Text] [Related]
18. Tailoring strength of nanocellulose foams by electrostatic complexation. Mariano M; Souza SF; Borges AC; do Nascimento DM; Bernardes JS Carbohydr Polym; 2021 Mar; 256():117547. PubMed ID: 33483055 [TBL] [Abstract][Full Text] [Related]
19. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481 [TBL] [Abstract][Full Text] [Related]
20. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials. Nair SS; Yan N Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]