These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34352478)

  • 1. Copper mine tailings valorization using microbial induced calcium carbonate precipitation.
    de Oliveira D; Horn EJ; Randall DG
    J Environ Manage; 2021 Nov; 298():113440. PubMed ID: 34352478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on tailings cementation by MICP technique with immersion curing.
    Jin C; Liu H; Guo M; Wang Y; Zhu J
    PLoS One; 2022; 17(8):e0272281. PubMed ID: 35913918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine.
    Lambert SE; Randall DG
    Water Res; 2019 Sep; 160():158-166. PubMed ID: 31136849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review.
    Yu X; Jiang J
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21483-21497. PubMed ID: 29948713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii.
    Ma L; Pang AP; Luo Y; Lu X; Lin F
    Microb Cell Fact; 2020 Jan; 19(1):12. PubMed ID: 31973723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application.
    Duarte-Nass C; Rebolledo K; Valenzuela T; Kopp M; Jeison D; Rivas M; Azócar L; Torres-Aravena Á; Ciudad G
    J Environ Manage; 2020 Feb; 256():109938. PubMed ID: 31989976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic mechanism and application of microbially induced carbonate precipitation (MICP) and inorganic additives for passivation of heavy metals in copper-nickel tailings.
    He Z; Xu Y; Wang W; Yang X; Jin Z; Zhang D; Pan X
    Chemosphere; 2023 Jan; 311(Pt 1):136981. PubMed ID: 36283435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis.
    He Z; Xu Y; Yang X; Shi J; Wang X; Jin Z; Zhang D; Pan X
    Sci Total Environ; 2022 Sep; 838(Pt 4):156504. PubMed ID: 35688247
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Erdmann N; Kästner F; de Payrebrune K; Strieth D
    Eng Life Sci; 2022 Dec; 22(12):760-768. PubMed ID: 36514530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale feasibility study for the stabilization of coal tailings via microbially induced calcite precipitation.
    Rodin S; Champagne P; Mann V
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8868-8882. PubMed ID: 36104649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native Bacterial Community Convergence in Augmented and Stimulated Ureolytic MICP Biocementation.
    Graddy CMR; Gomez MG; DeJong JT; Nelson DC
    Environ Sci Technol; 2021 Aug; 55(15):10784-10793. PubMed ID: 34279077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Jute Fibres on the Process of MICP and Properties of Biocemented Sand.
    Spencer CA; van Paassen L; Sass H
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment.
    Peng J; Liu Z
    PLoS One; 2019; 14(6):e0218396. PubMed ID: 31211807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-sterile corn steep liquor a novel, cost effective and powerful culture media for Sporosarcina pasteurii cultivation for sand improvement.
    Babakhani S; Fahmi A; Katebi H; Ouria A; Majnouni-Toutakhane A; Ganbarov K; Kafil HS
    J Appl Microbiol; 2021 Apr; 130(4):1232-1244. PubMed ID: 33025710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation.
    Terzis D; Laloui L
    Sci Rep; 2018 Jan; 8(1):1416. PubMed ID: 29362386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of Sporosarcina-like Bacterial Strains Obtained from Meter-Scale Augmented and Stimulated Biocementation Experiments.
    Graddy CMR; Gomez MG; Kline LM; Morrill SR; DeJong JT; Nelson DC
    Environ Sci Technol; 2018 Apr; 52(7):3997-4005. PubMed ID: 29505251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries.
    Marín S; Cabestrero O; Demergasso C; Olivares S; Zetola V; Vera M
    Acta Biomater; 2021 Jan; 120():304-317. PubMed ID: 33212232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-cement-modified construction materials and their performances.
    Yu X; He Z; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11219-11231. PubMed ID: 34528205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii.
    Murugan R; Suraishkumar GK; Mukherjee A; Dhami NK
    Sci Rep; 2021 Oct; 11(1):20856. PubMed ID: 34675302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation.
    Wang L; Liu S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.