BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34352535)

  • 21. Radiomics-based machine-learning method for prediction of distant metastasis from soft-tissue sarcomas.
    Tian L; Zhang D; Bao S; Nie P; Hao D; Liu Y; Zhang J; Wang H
    Clin Radiol; 2021 Feb; 76(2):158.e19-158.e25. PubMed ID: 33293024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling.
    Pham-The H; Casañola-Martin G; Garrigues T; Bermejo M; González-Álvarez I; Nguyen-Hai N; Cabrera-Pérez MÁ; Le-Thi-Thu H
    Mol Divers; 2016 Feb; 20(1):93-109. PubMed ID: 26643659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decision analysis framework for predicting no-shows to appointments using machine learning algorithms.
    Deina C; Fogliatto FS; da Silveira GJC; Anzanello MJ
    BMC Health Serv Res; 2024 Jan; 24(1):37. PubMed ID: 38183029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition.
    Alharbi F; Ouarbya L; Ward JA
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset.
    Swana EF; Doorsamy W; Bokoro P
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques.
    Chang YS; Park HS; Moon IJ
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833410
    [No Abstract]   [Full Text] [Related]  

  • 27. GHOST: Adjusting the Decision Threshold to Handle Imbalanced Data in Machine Learning.
    Esposito C; Landrum GA; Schneider N; Stiefl N; Riniker S
    J Chem Inf Model; 2021 Jun; 61(6):2623-2640. PubMed ID: 34100609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Resampling Strategies and Ensemble Machine Learning Methods to Enhance Prediction of Neonates with a Low Apgar Score After Induction of Labor in Northern Tanzania.
    Tarimo CS; Bhuyan SS; Li Q; Ren W; Mahande MJ; Wu J
    Risk Manag Healthc Policy; 2021; 14():3711-3720. PubMed ID: 34522147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning.
    Xu T; Coco G; Neale M
    Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle.
    Keshavarzi H; Sadeghi-Sefidmazgi A; Mirzaei A; Ravanifard R
    Prev Vet Med; 2020 Feb; 175():104869. PubMed ID: 31896505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing and mitigating the effects of class imbalance in machine learning with application to X-ray imaging.
    Qu W; Balki I; Mendez M; Valen J; Levman J; Tyrrell PN
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2041-2048. PubMed ID: 32965624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oversampling methods for machine learning model data training to improve model capabilities to predict the presence of Escherichia coli MG1655 in spinach wash water.
    Stanosheck JA; Castell-Perez ME; Moreira RG; King MD; Castillo A
    J Food Sci; 2024 Jan; 89(1):150-173. PubMed ID: 38051016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome.
    Koivu A; Korpimäki T; Kivelä P; Pahikkala T; Sairanen M
    Comput Biol Med; 2018 Jul; 98():1-7. PubMed ID: 29758452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Nowcasting System Using Machine Learning Approaches to Predict Fecal Contamination Levels at Recreational Beaches in Korea.
    Park Y; Kim M; Pachepsky Y; Choi SH; Cho JG; Jeon J; Cho KH
    J Environ Qual; 2018 Sep; 47(5):1094-1102. PubMed ID: 30272778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An improved support vector machine-based diabetic readmission prediction.
    Cui S; Wang D; Wang Y; Yu PW; Jin Y
    Comput Methods Programs Biomed; 2018 Nov; 166():123-135. PubMed ID: 30415712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SMOTE for high-dimensional class-imbalanced data.
    Blagus R; Lusa L
    BMC Bioinformatics; 2013 Mar; 14():106. PubMed ID: 23522326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of mortality prediction models for road traffic accidents: an ensemble technique for imbalanced data.
    Boo Y; Choi Y
    BMC Public Health; 2022 Aug; 22(1):1476. PubMed ID: 35918672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ensemble-based classification approach for PM2.5 concentration forecasting using meteorological data.
    Saminathan S; Malathy C
    Front Big Data; 2023; 6():1175259. PubMed ID: 37360751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging.
    Teh K; Armitage P; Tesfaye S; Selvarajah D; Wilkinson ID
    PLoS One; 2020; 15(12):e0243907. PubMed ID: 33320890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.