BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34352654)

  • 1. Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning.
    Lemay A; Gros C; Zhuo Z; Zhang J; Duan Y; Cohen-Adad J; Liu Y
    Neuroimage Clin; 2021; 31():102766. PubMed ID: 34352654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.
    Gros C; De Leener B; Badji A; Maranzano J; Eden D; Dupont SM; Talbott J; Zhuoquiong R; Liu Y; Granberg T; Ouellette R; Tachibana Y; Hori M; Kamiya K; Chougar L; Stawiarz L; Hillert J; Bannier E; Kerbrat A; Edan G; Labauge P; Callot V; Pelletier J; Audoin B; Rasoanandrianina H; Brisset JC; Valsasina P; Rocca MA; Filippi M; Bakshi R; Tauhid S; Prados F; Yiannakas M; Kearney H; Ciccarelli O; Smith S; Treaba CA; Mainero C; Lefeuvre J; Reich DS; Nair G; Auclair V; McLaren DG; Martin AR; Fehlings MG; Vahdat S; Khatibi A; Doyon J; Shepherd T; Charlson E; Narayanan S; Cohen-Adad J
    Neuroimage; 2019 Jan; 184():901-915. PubMed ID: 30300751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open-source pipeline for multi-class segmentation of the spinal cord with deep learning.
    Paugam F; Lefeuvre J; Perone CS; Gros C; Reich DS; Sati P; Cohen-Adad J
    Magn Reson Imaging; 2019 Dec; 64():21-27. PubMed ID: 31004711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas.
    Sun T; Wang Y; Liu X; Li Z; Zhang J; Lu J; Qu L; Haller S; Duan Y; Zhuo Z; Cheng D; Xu X; Jia W; Liu Y
    Neuro Oncol; 2023 Jun; 25(6):1157-1165. PubMed ID: 36562243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Cervical Spinal Cord Segmentation in Real-World MRI of Multiple Sclerosis Patients by Optimized Hybrid Residual Attention-Aware Convolutional Neural Networks.
    Bueno A; Bosch I; Rodríguez A; Jiménez A; Carreres J; Fernández M; Marti-Bonmati L; Alberich-Bayarri A
    J Digit Imaging; 2022 Oct; 35(5):1131-1142. PubMed ID: 35789447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic quadriceps and patellae segmentation of MRI with cascaded U
    Cheng R; Crouzier M; Hug F; Tucker K; Juneau P; McCreedy E; Gandler W; McAuliffe MJ; Sheehan FT
    Med Phys; 2022 Jan; 49(1):443-460. PubMed ID: 34755359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Neural Network-Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury.
    McCoy DB; Dupont SM; Gros C; Cohen-Adad J; Huie RJ; Ferguson A; Duong-Fernandez X; Thomas LH; Singh V; Narvid J; Pascual L; Kyritsis N; Beattie MS; Bresnahan JC; Dhall S; Whetstone W; Talbott JF;
    AJNR Am J Neuroradiol; 2019 Apr; 40(4):737-744. PubMed ID: 30923086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automatic 3D segmentation of the thoracolumbar spinal cord and the vertebral canal from T2-weighted MRI using K-means clustering algorithm.
    Sabaghian S; Dehghani H; Batouli SAH; Khatibi A; Oghabian MA
    Spinal Cord; 2020 Jul; 58(7):811-820. PubMed ID: 32132652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.
    Gros C; De Leener B; Dupont SM; Martin AR; Fehlings MG; Bakshi R; Tummala S; Auclair V; McLaren DG; Callot V; Cohen-Adad J; Sdika M
    Med Image Anal; 2018 Feb; 44():215-227. PubMed ID: 29288983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation, classification, and follow-up of optic pathway gliomas using deep learning and fuzzy c-means clustering based on MRI.
    Artzi M; Gershov S; Ben-Sira L; Roth J; Kozyrev D; Shofty B; Gazit T; Halag-Milo T; Constantini S; Ben Bashat D
    Med Phys; 2020 Nov; 47(11):5693-5701. PubMed ID: 32969025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario.
    Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS
    Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.
    Dupont SM; De Leener B; Taso M; Le Troter A; Nadeau S; Stikov N; Callot V; Cohen-Adad J
    Neuroimage; 2017 Apr; 150():358-372. PubMed ID: 27663988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
    Sun J; Chen W; Peng S; Liu B
    J Med Syst; 2019 Jun; 43(7):221. PubMed ID: 31177346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAMSTCD: A Novel Augmented Model for Spinal Cord Segmentation and Tumor Classification Using Deep Nets.
    Mohanty R; Allabun S; Solanki SS; Pani SK; Alqahtani MS; Abbas M; Soufiene BO
    Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter.
    Dostál M; Keřkovský M; Korit Áková E; Němcová E; Stulík J; Staňková M; Bernard V
    J Magn Reson Imaging; 2018 Nov; 48(5):1217-1227. PubMed ID: 29707834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN.
    Schouten JPE; Noteboom S; Martens RM; Mes SW; Leemans CR; de Graaf P; Steenwijk MD
    Cancer Imaging; 2022 Jan; 22(1):8. PubMed ID: 35033188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated segmentation of brain tumor from multiparametric MRI using 3D context deep supervised U-Net.
    Lin M; Momin S; Lei Y; Wang H; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Aug; 48(8):4365-4374. PubMed ID: 34101845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury.
    Karthik EN; Valosek J; Smith AC; Pfyffer D; Schading-Sassenhausen S; Farner L; Weber KA; Freund P; Cohen-Adad J
    medRxiv; 2024 Apr; ():. PubMed ID: 38699309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.