These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34352714)

  • 1. Cu-promoted intramolecular hydroxylation of CH bonds using directing groups with varying denticity.
    Zhang S; Trammell R; Cordova A; Siegler MA; Garcia-Bosch I
    J Inorg Biochem; 2021 Oct; 223():111557. PubMed ID: 34352714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the Mechanism of Intramolecular Cu-Directed Hydroxylation of sp
    Trammell R; See YY; Herrmann AT; Xie N; Díaz DE; Siegler MA; Baran PS; Garcia-Bosch I
    J Org Chem; 2017 Aug; 82(15):7887-7904. PubMed ID: 28654755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups.
    Rajabimoghadam K; Darwish Y; Bashir U; Pitman D; Eichelberger S; Siegler MA; Swart M; Garcia-Bosch I
    J Am Chem Soc; 2018 Dec; 140(48):16625-16634. PubMed ID: 30400740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenton-like Chemistry by a Copper(I) Complex and H
    Kim B; Brueggemeyer MT; Transue WJ; Park Y; Cho J; Siegler MA; Solomon EI; Karlin KD
    J Am Chem Soc; 2023 May; 145(21):11735-11744. PubMed ID: 37195014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular gamma-hydroxylations of nonactivated C-H bonds with copper complexes and molecular oxygen.
    Schönecker B; Zheldakova T; Lange C; Günther W; Görls H; Bohl M
    Chemistry; 2004 Nov; 10(23):6029-42. PubMed ID: 15521055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.
    Mandal S; Mukherjee J; Lloret F; Mukherjee R
    Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes.
    Bhadra M; Lee JYC; Cowley RE; Kim S; Siegler MA; Solomon EI; Karlin KD
    J Am Chem Soc; 2018 Jul; 140(29):9042-9045. PubMed ID: 29957998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of O
    Hangasky JA; Iavarone AT; Marletta MA
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4915-4920. PubMed ID: 29686097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination chemistry and reactivity of a cupric hydroperoxide species featuring a proximal H-bonding substituent.
    Kim S; Saracini C; Siegler MA; Drichko N; Karlin KD
    Inorg Chem; 2012 Dec; 51(23):12603-5. PubMed ID: 23153187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reactive Co
    Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D
    J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity studies on Fe(III)-(O2(2-))-Cu(II) compounds: influence of the ligand architecture and copper ligand denticity.
    Chufán EE; Mondal B; Gandhi T; Kim E; Rubie ND; Moënne-Loccoz P; Karlin KD
    Inorg Chem; 2007 Aug; 46(16):6382-94. PubMed ID: 17616124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-Like Hydroxylation of Aliphatic C-H Bonds From an Isolable Co-Oxo Complex.
    Goetz MK; Schneider JE; Filatov AS; Jesse KA; Anderson JS
    J Am Chem Soc; 2021 Dec; 143(49):20849-20862. PubMed ID: 34856101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
    Cowley RE; Tian L; Solomon EI
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12035-12040. PubMed ID: 27790986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2 O2 Core: Phenolate Hydroxylation through a Cu(III) Intermediate.
    Chiang L; Keown W; Citek C; Wasinger EC; Stack TD
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10453-7. PubMed ID: 27440390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.