These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34352736)

  • 1. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis.
    Colachis SC; Dunlap CF; Annetta NV; Tamrakar SM; Bockbrader MA; Friedenberg DA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352736
    [No Abstract]   [Full Text] [Related]  

  • 2. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review.
    Dunlap CF; Colachis SC; Meyers EC; Bockbrader MA; Friedenberg DA
    Front Neurorobot; 2020; 14():558987. PubMed ID: 33162885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications.
    Zhang M; Schwemmer MA; Ting JE; Majstorovic CE; Friedenberg DA; Bockbrader MA; Jerry Mysiw W; Rezai AR; Annetta NV; Bouton CE; Bresler HS; Sharma G
    Bioelectron Med; 2018; 4():11. PubMed ID: 32232087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interim Safety Profile From the Feasibility Study of the BrainGate Neural Interface System.
    Rubin DB; Ajiboye AB; Barefoot L; Bowker M; Cash SS; Chen D; Donoghue JP; Eskandar EN; Friehs G; Grant C; Henderson JM; Kirsch RF; Marujo R; Masood M; Mernoff ST; Miller JP; Mukand JA; Penn RD; Shefner J; Shenoy KV; Simeral JD; Sweet JA; Walter BL; Williams ZM; Hochberg LR
    Neurology; 2023 Mar; 100(11):e1177-e1192. PubMed ID: 36639237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA).
    Guo L
    J Neural Eng; 2020 Jun; 17(3):036018. PubMed ID: 32365334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays.
    Sponheim C; Papadourakis V; Collinger JL; Downey J; Weiss J; Pentousi L; Elliott K; Hatsopoulos NG
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34847547
    [No Abstract]   [Full Text] [Related]  

  • 11. Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
    Simeral JD; Hosman T; Saab J; Flesher SN; Vilela M; Franco B; Kelemen JN; Brandman DM; Ciancibello JG; Rezaii PG; Eskandar EN; Rosler DM; Shenoy KV; Henderson JM; Nurmikko AV; Hochberg LR
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2313-2325. PubMed ID: 33784612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance.
    Hoeferlin GF; Bajwa T; Olivares H; Zhang J; Druschel LN; Sturgill BS; Sobota M; Boucher P; Duncan J; Hernandez-Reynoso AG; Cogan SF; Pancrazio JJ; Capadona JR
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 14. The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation.
    Parker RA; Negi S; Davis T; Keefer EW; Wiggins H; House PA; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():791-4. PubMed ID: 23366011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays.
    Hernandez-Reynoso AG; Sturgill BS; Hoeferlin GF; Druschel LN; Krebs OK; Menendez DM; Thai TTD; Smith TJ; Duncan J; Zhang J; Mittal G; Radhakrishna R; Desai MS; Cogan SF; Pancrazio JJ; Capadona JR
    Biomaterials; 2023 Dec; 303():122351. PubMed ID: 37931456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
    Bedell HW; Hermann JK; Ravikumar M; Lin S; Rein A; Li X; Molinich E; Smith PD; Selkirk SM; Miller RH; Sidik S; Taylor DM; Capadona JR
    Biomaterials; 2018 May; 163():163-173. PubMed ID: 29471127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain-computer interfaces: a review.
    Liu Y; Xu S; Yang Y; Zhang K; He E; Liang W; Luo J; Wu Y; Cai X
    Microsyst Nanoeng; 2023; 9():13. PubMed ID: 36726940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation.
    Young D; Willett F; Memberg WD; Murphy B; Walter B; Sweet J; Miller J; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2018 Apr; 15(2):026014. PubMed ID: 29199642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.