These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34352741)

  • 1. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 2. InverseMuscleNET: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modeling.
    Nasr A; Inkol KA; Bell S; McPhee J
    Front Comput Neurosci; 2021; 15():759489. PubMed ID: 35002663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression.
    Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach.
    Delgado AL; Da Rocha AF; Leon AS; Ruiz-Olaya A; Montero KR; Delis AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():700-703. PubMed ID: 34891388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Segmentation Parallel CNN Model for Estimating Assembly Torque Using Surface Electromyography Signals.
    Chen C; Huang K; Li D; Zhao Z; Hong J
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent Neural Network.
    Zhang Z; He C; Yang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32709164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques.
    Kaya E; Argunsah H
    Comput Methods Biomech Biomed Engin; 2024 Sep; ():1-11. PubMed ID: 39235388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition.
    Xu P; Li F; Wang H
    PLoS One; 2022; 17(1):e0262810. PubMed ID: 35051235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Forecasting of sEMG Features for Trunk Muscle Fatigue Using Machine Learning.
    Moniri A; Terracina D; Rodriguez-Manzano J; Strutton PH; Georgiou P
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):718-727. PubMed ID: 32746076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of wrist angle from sonomyography signals with artificial neural networks technique.
    Shi J; Zheng Y; Yan Z
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3549-52. PubMed ID: 17946186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle Joint Torque Prediction Using an NMS Solver Informed-ANN Model and Transfer Learning.
    Zhang L; Zhu X; Gutierrez-Farewik EM; Wang R
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):5895-5906. PubMed ID: 36112547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic EMG-torque model of elbow based on neural networks.
    Liang Peng ; Zeng-Guang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning for Detection of Muscular Activity from Surface EMG Signals.
    Di Nardo F; Nocera A; Cucchiarelli A; Fioretti S; Morbidoni C
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.