BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34353244)

  • 1. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
    Yaseen A; Gull S; Akhtar N; Amin I; Minhas F
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150021. PubMed ID: 34353244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HemoPred: a web server for predicting the hemolytic activity of peptides.
    Win TS; Malik AA; Prachayasittikul V; S Wikberg JE; Nantasenamat C; Shoombuatong W
    Future Med Chem; 2017 Mar; 9(3):275-291. PubMed ID: 28211294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP
    Gull S; Minhas F
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):275-283. PubMed ID: 32750857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.
    Timmons PB; Hewage CM
    Sci Rep; 2020 Jul; 10(1):10869. PubMed ID: 32616760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-guided discovery and design of non-hemolytic peptides.
    Plisson F; Ramírez-Sánchez O; Martínez-Hernández C
    Sci Rep; 2020 Oct; 10(1):16581. PubMed ID: 33024236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiquery Similarity Searching Models: An Alternative Approach for Predicting Hemolytic Activity from Peptide Sequence.
    Castillo-Mendieta K; Agüero-Chapin G; Marquez E; Perez-Castillo Y; Barigye SJ; Pérez-Cárdenas M; Peréz-Giménez F; Marrero-Ponce Y
    Chem Res Toxicol; 2024 Apr; 37(4):580-589. PubMed ID: 38501392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation.
    Hasan MM; Schaduangrat N; Basith S; Lee G; Shoombuatong W; Manavalan B
    Bioinformatics; 2020 Jun; 36(11):3350-3356. PubMed ID: 32145017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides.
    Zakharova E; Orsi M; Capecchi A; Reymond JL
    ChemMedChem; 2022 Sep; 17(17):e202200291. PubMed ID: 35880810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.
    Chaudhary K; Kumar R; Singh S; Tuknait A; Gautam A; Mathur D; Anand P; Varshney GC; Raghava GP
    Sci Rep; 2016 Mar; 6():22843. PubMed ID: 26953092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides.
    Li Z; Jin J; Wang Y; Long W; Ding Y; Hu H; Wei L
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36897030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. prPred-DRLF: Plant R protein predictor using deep representation learning features.
    Wang Y; Xu L; Zou Q; Lin C
    Proteomics; 2022 Jan; 22(1-2):e2100161. PubMed ID: 34569713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.