BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34353488)

  • 1. A caspase-3 activatable photoacoustic probe for in vivo imaging of tumor apoptosis.
    Wang Y; Ye D
    Methods Enzymol; 2021; 657():21-57. PubMed ID: 34353488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Photoacoustic Probe for the Imaging of Tumor Apoptosis by Caspase-Mediated Macrocyclization and Self-Assembly.
    Wang Y; Hu X; Weng J; Li J; Fan Q; Zhang Y; Ye D
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4886-4890. PubMed ID: 30688393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A caspase-3-activatable bimodal probe for photoacoustic and magnetic resonance imaging of tumor apoptosis in vivo.
    Bai H; Wang Y; Hu Y; Ye D
    Biosens Bioelectron; 2022 Nov; 216():114648. PubMed ID: 36055132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring a Near-Infrared Macrocyclization Scaffold Allows the Control of In Situ Self-Assembly for Photoacoustic/PET Bimodal Imaging.
    Wang Y; Bai H; Miao Y; Weng J; Huang Z; Fu J; Zhang Y; Lin J; Ye D
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202200369. PubMed ID: 35118798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caspase-3-Responsive Fluorescent/Photoacoustic Imaging of Tumor Apoptosis.
    Liu J; Wu F; Wang M; Tao M; Liu Z; Hai Z
    Anal Chem; 2023 Jun; 95(25):9404-9408. PubMed ID: 37306631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Quantitative Assessment of a Radiation Dose Based on Ratiometric Photoacoustic Imaging of Tumor Apoptosis.
    Fang J; Zhao Y; Wang A; Zhang Y; Cui C; Ye S; Mao Q; Feng Y; Li J; Xu C; Shi H
    Anal Chem; 2022 Mar; 94(12):5149-5158. PubMed ID: 35311264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors.
    Wu C; Zhang R; Du W; Cheng L; Liang G
    Methods Enzymol; 2021; 657():111-144. PubMed ID: 34353484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activatable Nanoprobe with Aggregation-Induced Dual Fluorescence and Photoacoustic Signal Enhancement for Tumor Precision Imaging and Radiotherapy.
    Yuan M; Fang X; Wu Y; Xu Y; Feng H; Mu J; Chen Z; Lin Y; Fu Q; Du W; Yang H; Song J
    Anal Chem; 2022 Mar; 94(12):5204-5211. PubMed ID: 35306819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral Photoacoustic Imaging of Tumor Protease Activity with a Gold Nanocage-Based Activatable Probe.
    Liu C; Li S; Gu Y; Xiong H; Wong WT; Sun L
    Mol Imaging Biol; 2018 Dec; 20(6):919-929. PubMed ID: 29736563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a small-molecule-based activatable photoacoustic probe.
    Ikeno T; Hanaoka K; Urano Y
    Methods Enzymol; 2021; 657():1-19. PubMed ID: 34353483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Designs of Activatable Photoacoustic Probes for Molecular Imaging.
    Miao Q; Pu K
    Bioconjug Chem; 2016 Dec; 27(12):2808-2823. PubMed ID: 27998078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Activatable Cyanine Dyes for Selective Tumor Imaging Using Near-Infrared Fluorescence and Photoacoustic Modalities.
    Mu H; Miki K; Harada H; Tanaka K; Nogita K; Ohe K
    ACS Sens; 2021 Jan; 6(1):123-129. PubMed ID: 33331765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Activatable Cancer-Targeted Hydrogen Peroxide Probe for Photoacoustic and Fluorescence Imaging.
    Weber J; Bollepalli L; Belenguer AM; Antonio MD; De Mitri N; Joseph J; Balasubramanian S; Hunter CA; Bohndiek SE
    Cancer Res; 2019 Oct; 79(20):5407-5417. PubMed ID: 31455691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of caspase-responsive smart molecular probe for positron emission tomography imaging of drug-induced apoptosis.
    Qiu L; Wang W; Li K; Peng Y; Lv G; Liu Q; Gao F; Seimbille Y; Xie M; Lin J
    Theranostics; 2019; 9(23):6962-6975. PubMed ID: 31660080
    [No Abstract]   [Full Text] [Related]  

  • 15. Stimuli-Responsive Nanotheranostics for Real-Time Monitoring Drug Release by Photoacoustic Imaging.
    Yang Z; Song J; Tang W; Fan W; Dai Y; Shen Z; Lin L; Cheng S; Liu Y; Niu G; Rong P; Wang W; Chen X
    Theranostics; 2019; 9(2):526-536. PubMed ID: 30809290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-Embedded Quinoidal Acene Based Semiconducting Chromophore Nanoprobe for Amplified Photoacoustic Imaging and Photothermal Therapy.
    Yin B; Wang Y; Zhang C; Zhao Y; Wang Y; Teng L; Yang Y; Zeng Z; Huan S; Song G; Zhang X
    Anal Chem; 2019 Dec; 91(23):15275-15283. PubMed ID: 31674180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkaline Phosphatase-Triggered Self-Assembly of Near-Infrared Nanoparticles for the Enhanced Photoacoustic Imaging of Tumors.
    Wu C; Zhang R; Du W; Cheng L; Liang G
    Nano Lett; 2018 Dec; 18(12):7749-7754. PubMed ID: 30481463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.
    Qin H; Zhou T; Yang S; Xing D
    Small; 2015 Jun; 11(22):2675-86. PubMed ID: 25656695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Semiconducting Photoacoustic Nanodroplets for Laser-Activatable Ultrasound Imaging and Combinational Cancer Therapy.
    Tang W; Yang Z; Wang S; Wang Z; Song J; Yu G; Fan W; Dai Y; Wang J; Shan L; Niu G; Fan Q; Chen X
    ACS Nano; 2018 Mar; 12(3):2610-2622. PubMed ID: 29451774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives.
    Zeng L; Ma G; Lin J; Huang P
    Small; 2018 Jul; 14(30):e1800782. PubMed ID: 29873182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.