These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34353953)

  • 1. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits.
    Robin P; Kavokine N; Bocquet L
    Science; 2021 Aug; 373(6555):687-691. PubMed ID: 34353953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Coulomb blockade as a fractional Wien effect.
    Kavokine N; Marbach S; Siria A; Bocquet L
    Nat Nanotechnol; 2019 Jun; 14(6):573-578. PubMed ID: 30962547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size effect in ion transport through angstrom-scale slits.
    Esfandiar A; Radha B; Wang FC; Yang Q; Hu S; Garaj S; Nair RR; Geim AK; Gopinadhan K
    Science; 2017 Oct; 358(6362):511-513. PubMed ID: 29074772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits.
    Yu Y; Fan J; Xia J; Zhu Y; Wu H; Wang F
    Nanoscale; 2019 Apr; 11(17):8449-8457. PubMed ID: 30985841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous Phase Behaviors of Monolayer NaCl Aqueous Solutions Induced by Effective Coulombic Interactions within Angstrom-Scale Slits.
    Zhao X; Liu Y; Lin D; Zhu W; Ma N; Xu WW; Zhao W; Sun Y; Zeng XC
    J Phys Chem Lett; 2022 Mar; 13(12):2704-2710. PubMed ID: 35302778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements.
    Chernev A; Marion S; Radenovic A
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33353100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transporting an ionic-liquid/water mixture in a conical nanochannel: a nanofluidic memristor.
    Sheng Q; Xie Y; Li J; Wang X; Xue J
    Chem Commun (Camb); 2017 Jun; 53(45):6125-6127. PubMed ID: 28530274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels.
    Robin P; Emmerich T; Ismail A; Niguès A; You Y; Nam GH; Keerthi A; Siria A; Geim AK; Radha B; Bocquet L
    Science; 2023 Jan; 379(6628):161-167. PubMed ID: 36634187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular streaming and its voltage control in ångström-scale channels.
    Mouterde T; Keerthi A; Poggioli AR; Dar SA; Siria A; Geim AK; Bocquet L; Radha B
    Nature; 2019 Mar; 567(7746):87-90. PubMed ID: 30842639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites.
    Poznanski RR
    J Integr Neurosci; 2004 Sep; 3(3):267-99. PubMed ID: 15366097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from the Brain: Bioinspired Nanofluidics.
    Hou Y; Ling Y; Wang Y; Wang M; Chen Y; Li X; Hou X
    J Phys Chem Lett; 2023 Mar; 14(11):2891-2900. PubMed ID: 36927003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel Molecular Modeling Approach for a Rational Design of Ionic Current Sensors for Nanofluidics.
    Kirch A; de Almeida JM; Miranda CR
    J Chem Theory Comput; 2018 Jun; 14(6):3113-3120. PubMed ID: 29722980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
    Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M
    J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices.
    Jia M; Kong X; Wang L; Zhang Y; Quan D; Ding L; Lu D; Jiang L; Guo W
    Small; 2020 Jan; 16(1):e1905557. PubMed ID: 31805218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimensional reduction of duplex DNA under confinement to nanofluidic slits.
    Vargas-Lara F; Stavis SM; Strychalski EA; Nablo BJ; Geist J; Starr FW; Douglas JF
    Soft Matter; 2015 Nov; 11(42):8273-84. PubMed ID: 26353028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofluidic diodes.
    Cheng LJ; Guo LJ
    Chem Soc Rev; 2010 Mar; 39(3):923-38. PubMed ID: 20179815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Confinement Effect of Angstrom-Sized Pores in Asymmetrical Membrane Constructed by Zeolitic Imidazolate Frameworks: Partially Dehydrated Ion Transport Performance.
    Li R; Lu B; Xie Z; Zhai J
    Small; 2019 Dec; 15(52):e1904866. PubMed ID: 31778019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through van-der-Waals-Like Heterostructures.
    Jia P; Wang L; Zhang Y; Yang Y; Jin X; Zhou M; Quan D; Jia M; Cao L; Long R; Jiang L; Guo W
    Adv Mater; 2021 Apr; 33(14):e2007529. PubMed ID: 33656226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.