These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34354089)

  • 1. Quantum chemical calculations of lithium-ion battery electrolyte and interphase species.
    Spotte-Smith EWC; Blau SM; Xie X; Patel HD; Wen M; Wood B; Dwaraknath S; Persson KA
    Sci Data; 2021 Aug; 8(1):203. PubMed ID: 34354089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal.
    Kamphaus EP; Gomez SA; Qin X; Shao M; Balbuena PB
    Chemphyschem; 2020 Jun; 21(12):1310-1317. PubMed ID: 32364643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface Engineering with Nonsacrificial Perfluorinated-Anion Additives for Boosting the Kinetics of Lithium-Ion Batteries.
    Kim HS; Kim TH; Kim W; Park SS; Jeong G
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Solid Electrolyte Interphase Formation and Evolution on Highly Oriented Pyrolytic and Disordered Graphite Negative Electrodes in Lithium-Ion Batteries.
    Zhu H; Russell JA; Fang Z; Barnes P; Li L; Efaw C; Muenzer A; May J; Hamal K; Cheng IF; Davis PH; Dufek E; Xiong H
    Small; 2021 Dec; 17(52):e2105292. PubMed ID: 34716757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.
    Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Li-Ion Batteries.
    Santos CS; Botz A; Bandarenka AS; Ventosa E; Schuhmann W
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202744. PubMed ID: 35312219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries.
    Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Solid-Electrolyte Interphase for Li Metal Anode.
    He D; Lu J; He G; Chen H
    Front Chem; 2022; 10():916132. PubMed ID: 35668827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries.
    McBrayer JD; Apblett CA; Harrison KL; Fenton KR; Minteer SD
    Nanotechnology; 2021 Sep; 32(50):. PubMed ID: 34315151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Role of Li
    He J; Wang H; Zhou Q; Qi S; Wu M; Li F; Hu W; Ma J
    Small Methods; 2021 Aug; 5(8):e2100441. PubMed ID: 34927858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Technique for Probing the Protecting Character of the Solid Electrolyte Interphase as a Critical but Elusive Property for Pursuing Long Cycle Life Lithium-Ion Batteries.
    Garcia-Quismondo E; Alvarez-Conde S; Garcia G; Medina-Santos JI; Palma J; Ventosa E
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43319-43327. PubMed ID: 36112515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Lithium Bis(oxalate)borate Electrolyte Additive on the Formation of a Solid Electrolyte Interphase on Amorphous Carbon Electrodes by
    Kawaura H; Harada M; Kondo Y; Mizutani M; Takahashi N; Yamada NL
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24526-24535. PubMed ID: 35585036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wide-Temperature Lithium-Ion Batteries.
    Liu G; Cao Z; Wang P; Ma Z; Zou Y; Sun Q; Cheng H; Cavallo L; Li S; Li Q; Ming J
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201893. PubMed ID: 35843866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells.
    Nölle R; Achazi AJ; Kaghazchi P; Winter M; Placke T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28187-28198. PubMed ID: 30044617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.
    Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure-Reactivity Relationships on CEI Formation and Cell Performance.
    von Aspern N; Diddens D; Kobayashi T; Börner M; Stubbmann-Kazakova O; Kozel V; Röschenthaler GV; Smiatek J; Winter M; Cekic-Laskovic I
    ACS Appl Mater Interfaces; 2019 May; 11(18):16605-16618. PubMed ID: 30965002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.