These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34354302)

  • 1. Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network.
    Wang L; Gu J; Chen Y; Liang Y; Zhang W; Pu J; Chen H
    Pattern Recognit; 2021 Apr; 112():. PubMed ID: 34354302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coarse-to-fine deep learning framework for optic disc segmentation in fundus images.
    Wang L; Liu H; Lu Y; Chen H; Zhang J; Pu J
    Biomed Signal Process Control; 2019 May; 51():82-89. PubMed ID: 33850515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph deep network for optic disc and optic cup segmentation for glaucoma disease using retinal imaging.
    Joshi A; Sharma KK
    Phys Eng Sci Med; 2022 Sep; 45(3):847-858. PubMed ID: 35737221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning.
    Wang Y; Yu X; Wu C
    J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated delineation of corneal layers on OCT images using a boundary-guided CNN.
    Wang L; Shen M; Chang Q; Shi C; Chen Y; Zhou Y; Zhang Y; Pu J; Chen H
    Pattern Recognit; 2021 Dec; 120():. PubMed ID: 34421131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images.
    Septiarini A; Hamdani H; Setyaningsih E; Junirianto E; Utaminingrum F
    Healthc Inform Res; 2023 Apr; 29(2):145-151. PubMed ID: 37190738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optic Disc Segmentation Using Attention-Based U-Net and the Improved Cross-Entropy Convolutional Neural Network.
    Jin B; Liu P; Wang P; Shi L; Zhao J
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation.
    Shalini R; Gopi VP
    Phys Eng Sci Med; 2022 Dec; 45(4):1111-1122. PubMed ID: 36094722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation.
    Fu H; Cheng J; Xu Y; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1597-1605. PubMed ID: 29969410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability distribution guided optic disc and cup segmentation from fundus images.
    Cheng P; Lyu J; Huang Y; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1976-1979. PubMed ID: 33018390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images.
    Zhu Q; Chen X; Meng Q; Song J; Luo G; Wang M; Shi F; Chen Z; Xiang D; Pan L; Li Z; Zhu W
    Biomed Opt Express; 2021 Oct; 12(10):6529-6544. PubMed ID: 34745754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated measurement of the disc-fovea angle based on DeepLabv3.
    Zheng B; Shen Y; Luo Y; Fang X; Zhu S; Zhang J; Wu M; Jin L; Yang W; Wang C
    Front Neurol; 2022; 13():949805. PubMed ID: 35968300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images.
    Kadambi S; Wang Z; Xing E
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified U-Net convolutional neural network for segmenting periprostatic adipose tissue based on contour feature learning.
    Wang G; Hu J; Zhang Y; Xiao Z; Huang M; He Z; Chen J; Bai Z
    Heliyon; 2024 Feb; 10(3):e25030. PubMed ID: 38318024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-dimensional dense attention network for pixel-wise segmentation of optic disc in colour fundus images.
    Ma S; A J; Perumal T SR
    Technol Health Care; 2024 Jul; ():. PubMed ID: 39058458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UGLS: an uncertainty guided deep learning strategy for accurate image segmentation.
    Yang X; Zheng Y; Mei C; Jiang G; Tian B; Wang L
    Front Physiol; 2024; 15():1362386. PubMed ID: 38651048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks.
    Xie Z; Ling T; Yang Y; Shu R; Liu BJ
    J Med Syst; 2020 Mar; 44(5):96. PubMed ID: 32193703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.