These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34354317)

  • 1. Using universal kriging to improve neighborhood physical disorder measurement.
    Mooney SJ; Bader MD; Lovasi GS; Neckerman KM; Rundle AG; Teitler JO
    Sociol Methods Res; 2020 Nov; 49(4):1163-1185. PubMed ID: 34354317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of an ecometric neighborhood physical disorder measure constructed by virtual street audit.
    Mooney SJ; Bader MD; Lovasi GS; Neckerman KM; Teitler JO; Rundle AG
    Am J Epidemiol; 2014 Sep; 180(6):626-35. PubMed ID: 25122584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neighborhood Physical Disorder in New York City.
    Quinn JW; Mooney SJ; Sheehan DM; Teitler JO; Neckerman KM; Kaufman TK; Lovasi GS; Bader MD; Rundle AG
    J Maps; 2016; 12(1):53-60. PubMed ID: 27482283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Street Audits to Measure Neighborhood Disorder: Virtual or In-Person?
    Mooney SJ; Bader MDM; Lovasi GS; Teitler JO; Koenen KC; Aiello AE; Galea S; Goldmann E; Sheehan DM; Rundle AG
    Am J Epidemiol; 2017 Aug; 186(3):265-273. PubMed ID: 28899028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial predictive properties of built environment characteristics assessed by drop-and-spin virtual neighborhood auditing.
    Plascak JJ; Schootman M; Rundle AG; Xing C; Llanos AAM; Stroup AM; Mooney SJ
    Int J Health Geogr; 2020 May; 19(1):21. PubMed ID: 32471502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of water table interpolation and groundwater storage volume using fuzzy computations.
    Masoumi Z; Rezaei A; Maleki J
    Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating a spatio-temporal model of observed neighborhood physical disorder.
    Plascak JJ; Mooney SJ; Schootman M; Rundle AG; Llanos AAM; Qin B; Hong CC; Demissie K; Bandera EV; Xu X
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100506. PubMed ID: 35691640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.
    Huang L; Zhang H; Xu P; Geng J; Wang C; Liu J
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas.
    Michael R; O'Lenick CR; Monaghan A; Wilhelmi O; Wiedinmyer C; Hayden M; Estes M
    J Expo Sci Environ Epidemiol; 2019 Oct; 29(6):806-820. PubMed ID: 30451934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of different spatial interpolation methods in sodium intake estimation].
    Fang K; Fang Y; Lian Y; Hu M; He Y
    Wei Sheng Yan Jiu; 2021 Mar; 50(2):217-222. PubMed ID: 33985624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities.
    Kim SY; Yi SJ; Eum YS; Choi HJ; Shin H; Ryou HG; Kim H
    Environ Health Toxicol; 2014; 29():e2014012. PubMed ID: 25262773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.
    Jia Z; Zhou S; Su Q; Yi H; Wang J
    Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29278363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filling the gaps: spatial interpolation of residential survey data in the estimation of neighborhood characteristics.
    Auchincloss AH; Diez Roux AV; Brown DG; Raghunathan TE; Erdmann CA
    Epidemiology; 2007 Jul; 18(4):469-78. PubMed ID: 17568220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CREATING MEASURES OF THEORETICALLY RELEVANT NEIGHBORHOOD ATTRIBUTES AT MULTIPLE SPATIAL SCALES.
    Bader MDM; Ailshire JA
    Sociol Methodol; 2014 Aug; 44(1):322-368. PubMed ID: 30505041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon.
    Ouabo RE; Sangodoyin AY; Ogundiran MB
    J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geostatistical characterization of the soil of Aguascalientes, México, by using spatial estimation techniques.
    Magdaleno-Márquez R; de la Luz Pérez-Rea M; Castaño VM
    Springerplus; 2016; 5(1):918. PubMed ID: 27386362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Soil Heavy Metal Distribution Using Geographically Weighted Regression Kriging.
    Fu P; Yang Y; Zou Y
    Bull Environ Contam Toxicol; 2022 Feb; 108(2):344-350. PubMed ID: 34741183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data.
    Li Y; Baorong Z; Xiaohong X; Zijun L
    PLoS One; 2022; 17(4):e0266942. PubMed ID: 35452466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Kriging incorporated with wind direction to investigate ground-level PM
    Zhang H; Zhan Y; Li J; Chao CY; Liu Q; Wang C; Jia S; Ma L; Biswas P
    Sci Total Environ; 2021 Jan; 751():141813. PubMed ID: 32898747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.