These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34354465)
1. Early-stage iron deficiency alters physiological processes and iron transporter expression, along with photosynthetic and oxidative damage to sorghum. Prity SA; El-Shehawi AM; Elseehy MM; Tahura S; Kabir AH Saudi J Biol Sci; 2021 Aug; 28(8):4770-4777. PubMed ID: 34354465 [TBL] [Abstract][Full Text] [Related]
2. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Prity SA; Sajib SA; Das U; Rahman MM; Haider SA; Kabir AH Protoplasma; 2020 Sep; 257(5):1373-1385. PubMed ID: 32535729 [TBL] [Abstract][Full Text] [Related]
3. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Kabir AH; Bennetzen JL Microbiol Res; 2024 Apr; 281():127630. PubMed ID: 38295681 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of Fe-acquisition genes causing decreased Fe uptake and photosynthetic inefficiency in Fe-deficient sunflower. Kabir AH; Tahura S; Elseehy MM; El-Shehawi AM Sci Rep; 2021 Mar; 11(1):5537. PubMed ID: 33692433 [TBL] [Abstract][Full Text] [Related]
5. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm. Wirén NV; Römheld V; Shioiri T; Marschner H New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479 [TBL] [Abstract][Full Text] [Related]
6. Morpho-physiological retardations due to iron toxicity involve redox imbalance rather than photosynthetic damages in tomato. Das U; Rahman MM; Roy ZR; Rahman MM; Kabir AH Plant Physiol Biochem; 2020 Nov; 156():55-63. PubMed ID: 32906022 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Kabir AH; Debnath T; Das U; Prity SA; Haque A; Rahman MM; Parvez MS Plant Physiol Biochem; 2020 May; 150():254-262. PubMed ID: 32171164 [TBL] [Abstract][Full Text] [Related]
8. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. Garnica M; Bacaicoa E; Mora V; San Francisco S; Baigorri R; Zamarreño AM; Garcia-Mina JM BMC Plant Biol; 2018 Jun; 18(1):105. PubMed ID: 29866051 [TBL] [Abstract][Full Text] [Related]
9. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Molassiotis A; Tanou G; Diamantidis G; Patakas A; Therios I J Plant Physiol; 2006 Feb; 163(2):176-85. PubMed ID: 16399008 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158 [TBL] [Abstract][Full Text] [Related]
11. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants. Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. Kabir AH; Rahman MA; Rahman MM; Brailey-Jones P; Lee KW; Bennetzen JL J Appl Microbiol; 2022 Nov; 133(5):2760-2778. PubMed ID: 35665578 [TBL] [Abstract][Full Text] [Related]
13. Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato. Kabir AH; Akther MS; Skalicky M; Das U; Gohari G; Brestic M; Hossain MM Sci Rep; 2021 Mar; 11(1):6040. PubMed ID: 33727682 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3, and ZmYS1, in S deprived maize plants. Chorianopoulou SN; Saridis YI; Dimou M; Katinakis P; Bouranis DL Front Plant Sci; 2015; 6():257. PubMed ID: 25941530 [TBL] [Abstract][Full Text] [Related]
15. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare). Yousfi S; Rabhi M; Abdelly C; Gharsalli M C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315 [TBL] [Abstract][Full Text] [Related]
16. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216 [TBL] [Abstract][Full Text] [Related]
17. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Inoue H; Higuchi K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK Plant J; 2003 Nov; 36(3):366-81. PubMed ID: 14617093 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis. Zhai L; Xiao D; Sun C; Wu T; Han Z; Zhang X; Xu X; Wang Y Plant Physiol Biochem; 2016 Dec; 109():515-524. PubMed ID: 27835849 [TBL] [Abstract][Full Text] [Related]
19. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. Pavlovic J; Samardzic J; Kostic L; Laursen KH; Natic M; Timotijevic G; Schjoerring JK; Nikolic M Ann Bot; 2016 Aug; 118(2):271-80. PubMed ID: 27371693 [TBL] [Abstract][Full Text] [Related]
20. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]