BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34354501)

  • 1. Enzymatic Synthesis of 1,5-Anhydro-4-
    Kajiki T; Yoshinaga K; Komba S; Kitaoka M
    J Appl Glycosci (1999); 2017; 64(4):91-97. PubMed ID: 34354501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new chemical synthesis of Ascopyrone P from 1,5-anhydro-D-fructose.
    Andreassen M; Lundt I
    Carbohydr Res; 2006 Jul; 341(10):1692-6. PubMed ID: 16630602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and reactivity of a novel disaccharide, glucosyl 1,5-anhydro-D-fructose (1,5-anhydro-3-O-alpha-glucopyranosyl-D-fructose).
    Yoshinaga K; Abe J; Tanimoto T; Koizumi K; Hizukuri S
    Carbohydr Res; 2003 Oct; 338(21):2221-5. PubMed ID: 14553983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of 4-O-glycosylated 1,5-anhydro-D-fructose and of 1,5-anhydro-D-tagatose from a common intermediate 2,3-O-isopropylidene-D-fructose.
    Agoston K; Dékány G; Lundt I
    Carbohydr Res; 2009 May; 344(8):1014-9. PubMed ID: 19349042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of three hetero disaccharides, 4-O-beta-glucopyranosyl-6-deoxy-D-glucose, 4-O-beta-D-glucopyranosyl-D-mannosamine, and 4-O-beta-D-glucopyranosyl-D-mannose, and confirmation of their structures by C-13 NMR and MS.
    Tariq MA; Hayashi K
    Biochem Biophys Res Commun; 1995 Sep; 214(2):568-75. PubMed ID: 7677766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isomerization of 6-O-substituted glucose and fructose under neutral pH conditions and subsequent β-elimination reactions.
    Chiku K; Ohfuji A; Ohtake N; Yoshida M; Ono H; Kitaoka M
    Carbohydr Res; 2022 Sep; 519():108626. PubMed ID: 35767916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkoxycarbonyl elimination of 3-O-substituted glucose and fructose by heat treatment under neutral pH.
    Chiku K; Tsukasaki R; Teshima Y; Yoshida M; Aramasa H; Nihira T; Nakai H; Ono H; Kitaoka M
    Carbohydr Res; 2020 Oct; 496():108129. PubMed ID: 32858482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosidation of 2,5-anhydro-3,4-di-O-benzyl-D-mannitol with different glucopyranosyl donors: a comparative study.
    Tegdes A; Medgyes G; Boros S; Kuszmann J
    Carbohydr Res; 2006 May; 341(6):776-81. PubMed ID: 16473342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase.
    Kitaoka M; Sasaki T; Taniguchi H
    J Biochem; 1992 Jul; 112(1):40-4. PubMed ID: 1429509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli.
    Kim YK; Kitaoka M; Krishnareddy M; Mori Y; Hayashi K
    J Biochem; 2002 Aug; 132(2):197-203. PubMed ID: 12153715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.
    Hamura K; Saburi W; Matsui H; Mori H
    Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.
    Saburi W; Tanaka Y; Muto H; Inoue S; Odaka R; Nishimoto M; Kitaoka M; Mori H
    Biosci Biotechnol Biochem; 2015; 79(6):969-77. PubMed ID: 25704402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptor specificity of cellobiose phosphorylase from Cellvibrio gilvus: synthesis of three branched trisaccharides.
    Percy A; Ono H; Hayashi K
    Carbohydr Res; 1998 Jun; 308(3-4):423-9. PubMed ID: 9711833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorolytic Reaction of Cellvibrio gilvus Cellobiose Phosphorylase.
    Kitaoka M; Sasaki T; Taniguchi H
    Biosci Biotechnol Biochem; 1992 Jan; 56(4):652-5. PubMed ID: 27280665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of 4-O-beta-D-glucopyranosyl-D-xylose. 4-O-beta-D-glucopyranosyl-D-arabinose, 4-O-beta-D-glucopyranosyl-2-deoxy-D-glucose, 4-O-beta-D-glucopyranosyl-D-mannose, and 4-O-beta-D-glucopyranosyl-D-glucosamine by cellobiose phosphorylase from Clostridium thermocellum.
    Alexander JK
    Arch Biochem Biophys; 1968 Feb; 123(2):240-6. PubMed ID: 4296051
    [No Abstract]   [Full Text] [Related]  

  • 18. METABOLIC NONEQUIVALENCE OF THE TWO GLUCOSE MOIETIES OF CELLOBIOSE IN CELLVIBRIO GILVUS.
    SWISHER EJ; STORVICK WO; KING KW
    J Bacteriol; 1964 Oct; 88(4):817-20. PubMed ID: 14219041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,5-anhydro-D-fructose and its derivatives: biosynthesis, preparation and potential medical applications.
    Fiskesund R; Abeyama K; Yoshinaga K; Abe J; Yuan Y; Yu S
    Planta Med; 2010 Oct; 76(15):1635-41. PubMed ID: 20645241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of 3-deoxypentulose by the isomerization and β-elimination of 4-O-substituted glucose and fructose.
    Chiku K; Yoshida M; Ono H; Kitaoka M
    Carbohydr Res; 2021 Oct; 508():108402. PubMed ID: 34303026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.