These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 3435454)
1. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate. Cole SC; Yon RJ Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454 [TBL] [Abstract][Full Text] [Related]
2. Ligand-mediated conformational changes in wheat-germ aspartate transcarbamoylase indicated by proteolytic susceptibility. Cole SC; Yon RJ Biochem J; 1984 Jul; 221(2):289-96. PubMed ID: 6383344 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal. Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732 [TBL] [Abstract][Full Text] [Related]
4. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase. Kempe TD; Stark GR J Biol Chem; 1975 Sep; 250(17):6861-9. PubMed ID: 239951 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification of adenylosuccinate synthetase from Escherichia coli by pyridoxal 5'-phosphate. Identification of an active site lysyl residue. Dong Q; Fromm HJ J Biol Chem; 1990 Apr; 265(11):6235-40. PubMed ID: 2108156 [TBL] [Abstract][Full Text] [Related]
6. Comparison of aspartate transcarbamoylases from wheat germ and Escherichia coli: functionally identical histidines in nonhomologous local sequences. Cole SC; Yon RJ Biochemistry; 1986 Nov; 25(22):7168-74. PubMed ID: 3542019 [TBL] [Abstract][Full Text] [Related]
7. Horse liver alcohol dehydrogenase. A study of the essential lysine residue. Chen SS; Engel PC Biochem J; 1975 Sep; 149(3):627-35. PubMed ID: 173294 [TBL] [Abstract][Full Text] [Related]
8. An essential lysine in the substrate-binding site of ornithine carbamoyltransferase. Valentini G; De Gregorio A; Di Salvo C; Grimm R; Bellocco E; Cuzzocrea G; Iadarola P Eur J Biochem; 1996 Jul; 239(2):397-402. PubMed ID: 8706746 [TBL] [Abstract][Full Text] [Related]
9. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate. Yon RJ Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473 [TBL] [Abstract][Full Text] [Related]
10. Effect of modification of lysine residues of fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase with pyridoxal 5'-phosphate. Kitajima S; Thomas H; Uyeda K J Biol Chem; 1985 Nov; 260(26):13995-4002. PubMed ID: 2997189 [TBL] [Abstract][Full Text] [Related]
11. Wheat-germ aspartate transcarbamoylase. Steady-state kinetics and stereochemistry of the binding site for L-aspartate. Grayson JE; Yon RJ; Butterworth PJ Biochem J; 1979 Nov; 183(2):247-54. PubMed ID: 534495 [TBL] [Abstract][Full Text] [Related]
12. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate. Lilley KS; Engel PC Eur J Biochem; 1992 Jul; 207(2):533-40. PubMed ID: 1633808 [TBL] [Abstract][Full Text] [Related]
13. Alteration of the allosteric properties of aspartate transcarbamoylase by pyridoxylation of the catalytic and regulatory subunits. Blackburn MN; Schachman HK Biochemistry; 1976 Mar; 15(6):1316-23. PubMed ID: 766834 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of wheat-germ aspartate transcarbamoylase by the triazinyl dye, procion red HE3B. Easton MJ; Yon RJ Biochim Biophys Acta; 1992 Feb; 1118(3):298-302. PubMed ID: 1737053 [TBL] [Abstract][Full Text] [Related]
15. Possible involvement of Lys603 from Escherichia coli glucosamine-6-phosphate synthase in the binding of its substrate fructose 6-phosphate. Golinelli-Pimpaneau B; Badet B Eur J Biochem; 1991 Oct; 201(1):175-82. PubMed ID: 1915361 [TBL] [Abstract][Full Text] [Related]
16. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
17. Modification of pig M4 lactate dehydrogenase by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue. Chen SS; Engel PC Biochem J; 1975 Jul; 149(1):107-13. PubMed ID: 1238085 [TBL] [Abstract][Full Text] [Related]
18. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase. Guidinger PF; Nowak T Biochemistry; 1991 Sep; 30(36):8851-61. PubMed ID: 1909575 [TBL] [Abstract][Full Text] [Related]
19. 5-Enolpyruvyl shikimate 3-phosphate synthase from Escherichia coli. Identification of Lys-22 as a potential active site residue. Huynh QK; Kishore GM; Bild GS J Biol Chem; 1988 Jan; 263(2):735-9. PubMed ID: 3121621 [TBL] [Abstract][Full Text] [Related]