These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34354559)
1. Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device. Chundi PK; Wang D; Kim SJ; Yang M; Cerqueira JP; Kang J; Jung S; Kim S; Seok M Front Neurosci; 2021; 15():684113. PubMed ID: 34354559 [TBL] [Abstract][Full Text] [Related]
2. A Low-Power Spiking Neural Network Chip Based on a Compact LIF Neuron and Binary Exponential Charge Injector Synapse Circuits. Asghar MS; Arslan S; Kim H Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210045 [TBL] [Abstract][Full Text] [Related]
3. A Compact and Low-Power SoC Design for Spiking Neural Network Based on Current Multiplier Charge Injector Synapse. Asghar MS; Arslan S; Al-Hamid AA; Kim H Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514571 [TBL] [Abstract][Full Text] [Related]
4. μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks. Stuijt J; Sifalakis M; Yousefzadeh A; Corradi F Front Neurosci; 2021; 15():664208. PubMed ID: 34093116 [TBL] [Abstract][Full Text] [Related]
5. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI. Xiao C; Chen J; Wang L Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344 [TBL] [Abstract][Full Text] [Related]
6. MorphBungee: A 65-nm 7.2-mm Wang T; Tian M; Wang H; Zhong Z; He J; Tang F; Zhou X; Lin Y; Yu SM; Liu L; Shi C IEEE Trans Biomed Circuits Syst; 2024 Jun; PP():. PubMed ID: 38861446 [TBL] [Abstract][Full Text] [Related]
7. SpQuant-SNN: ultra-low precision membrane potential with sparse activations unlock the potential of on-device spiking neural networks applications. Hasssan A; Meng J; Anupreetham A; Seo JS Front Neurosci; 2024; 18():1440000. PubMed ID: 39296710 [TBL] [Abstract][Full Text] [Related]
8. A 510 μW 0.738-mm Fang C; Wang C; Zhao S; Tian F; Yang J; Sawan M IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):507-520. PubMed ID: 37224372 [TBL] [Abstract][Full Text] [Related]
9. Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes. Xu C; Zhang W; Liu Y; Li P Front Neurosci; 2020; 14():104. PubMed ID: 32140093 [TBL] [Abstract][Full Text] [Related]
10. A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification. Chu H; Yan Y; Gan L; Jia H; Qian L; Huan Y; Zheng L; Zou Z IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):511-523. PubMed ID: 35802543 [TBL] [Abstract][Full Text] [Related]
11. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related]
12. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting. Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L Front Neurosci; 2016; 10():474. PubMed ID: 27857680 [TBL] [Abstract][Full Text] [Related]
13. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware. Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R Front Neurosci; 2021; 15():694170. PubMed ID: 34867142 [TBL] [Abstract][Full Text] [Related]
14. A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps. Zhang L; Yang J; Shi C; Lin Y; He W; Zhou X; Yang X; Liu L; Wu N Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577214 [TBL] [Abstract][Full Text] [Related]
15. FangTianSim: High-Level Cycle-Accurate Resistive Random-Access Memory-Based Multi-Core Spiking Neural Network Processor Simulator. Wei J; Wang Z; Li Y; Lu J; Jiang H; An J; Li Y; Gao L; Zhang X; Shi T; Liu Q Front Neurosci; 2021; 15():806325. PubMed ID: 35126046 [TBL] [Abstract][Full Text] [Related]
16. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning. Kim D; Chakraborty B; She X; Lee E; Kang B; Mukhopadhyay S Front Neurosci; 2022; 16():775457. PubMed ID: 35478844 [TBL] [Abstract][Full Text] [Related]
17. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures. Sengupta A; Ye Y; Wang R; Liu C; Roy K Front Neurosci; 2019; 13():95. PubMed ID: 30899212 [TBL] [Abstract][Full Text] [Related]
18. Spike-Based Neuromorphic Hardware for Dynamic Tactile Perception with a Self-Powered Mechanoreceptor Array. Lee SW; Yun SY; Han JK; Nho YH; Jeon SB; Choi YK Adv Sci (Weinh); 2024 Sep; 11(34):e2402175. PubMed ID: 38981031 [TBL] [Abstract][Full Text] [Related]
19. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices. Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH Front Neurosci; 2020; 14():423. PubMed ID: 32733180 [TBL] [Abstract][Full Text] [Related]
20. MorphIC: A 65-nm 738k-Synapse/mm Frenkel C; Legat JD; Bol D IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):999-1010. PubMed ID: 31329562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]