These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 34354677)

  • 21.
    Gurung AB
    Gene Rep; 2020 Dec; 21():100860. PubMed ID: 32875166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opportunities and Challenges in Targeting the Proofreading Activity of SARS-CoV-2 Polymerase Complex.
    Deval J; Gurard-Levin ZA
    Molecules; 2022 May; 27(9):. PubMed ID: 35566268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant.
    Abdalla M; Rabie AM
    Comput Biol Chem; 2023 Jun; 104():107768. PubMed ID: 36842392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facilitating SARS CoV-2 RNA-Dependent RNA polymerase (RdRp) drug discovery by the aid of HCV NS5B palm subdomain binders: In silico approaches and benchmarking.
    Elghoneimy LK; Ismail MI; Boeckler FM; Azzazy HME; Ibrahim TM
    Comput Biol Med; 2021 Jul; 134():104468. PubMed ID: 34015671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations.
    Jukič M; Janežič D; Bren U
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on the interaction of nucleoside analogues with SARS-CoV-2 RNA dependent RNA polymerase.
    Khan S; Attar F; Bloukh SH; Sharifi M; Nabi F; Bai Q; Khan RH; Falahati M
    Int J Biol Macromol; 2021 Jun; 181():605-611. PubMed ID: 33766591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacophore screening to identify natural origin compounds to target RNA-dependent RNA polymerase (RdRp) of SARS-CoV2.
    Mishra A; Rathore AS
    Mol Divers; 2022 Oct; 26(5):2613-2629. PubMed ID: 35000060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): a virtual screening and molecular dynamic simulation study.
    Gogoi M; Borkotoky M; Borchetia S; Chowdhury P; Mahanta S; Barooah AK
    J Biomol Struct Dyn; 2022 Sep; 40(15):7143-7166. PubMed ID: 33715595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cell-based assay to discover inhibitors of SARS-CoV-2 RNA dependent RNA polymerase.
    Zhao J; Guo S; Yi D; Li Q; Ma L; Zhang Y; Wang J; Li X; Guo F; Lin R; Liang C; Liu Z; Cen S
    Antiviral Res; 2021 Jun; 190():105078. PubMed ID: 33894278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp).
    Ribaudo G; Ongaro A; Oselladore E; Zagotto G; Memo M; Gianoncelli A
    J Biomol Struct Dyn; 2022 Feb; 40(3):1101-1108. PubMed ID: 32948103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising
    Rabie AM; Eltayb WA
    Adv Redox Res; 2023 Jan; ():100064. PubMed ID: 36776420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity.
    Tsuji M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Denovo designing, retro-combinatorial synthesis, and molecular dynamics analysis identify novel antiviral VTRM1.1 against RNA-dependent RNA polymerase of SARS CoV2 virus.
    Tiwari V
    Int J Biol Macromol; 2021 Feb; 171():358-365. PubMed ID: 33421473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase.
    Zamzami MA
    J Biomol Struct Dyn; 2023 Mar; 41(5):1846-1858. PubMed ID: 35037842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of SARS-CoV-2: An in-silico approach.
    Singh R; Bhardwaj VK; Purohit R
    Comput Biol Med; 2021 Dec; 139():104965. PubMed ID: 34717229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors.
    Ibrahim MAA; Abdelrahman AHM; Allemailem KS; Almatroudi A; Moustafa MF; Hegazy MF
    Protein J; 2021 Jun; 40(3):296-309. PubMed ID: 33387249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an
    Elfiky AA
    J Biomol Struct Dyn; 2021 Jun; 39(9):3204-3212. PubMed ID: 32338164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug repurposing against main protease and RNA-dependent RNA polymerase of SARS-CoV-2 using molecular docking, MM-GBSA calculations and molecular dynamics.
    Mohammed AO; Abo-Idrees MI; Makki AA; Ibraheem W; Alzain AA
    Struct Chem; 2022; 33(5):1553-1567. PubMed ID: 35789829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering Potential RNA Dependent RNA Polymerase Inhibitors as Prospective Drugs Against COVID-19: An in silico Approach.
    Saha S; Nandi R; Vishwakarma P; Prakash A; Kumar D
    Front Pharmacol; 2021; 12():634047. PubMed ID: 33716752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN.
    Moeller NH; Shi K; Demir Ö; Belica C; Banerjee S; Yin L; Durfee C; Amaro RE; Aihara H
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35165203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.