BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34354765)

  • 1. β-Methyl-δ-valerolactone-containing Thermoplastic Poly(ester-amide)s: Synthesis, Mechanical Properties, and Degradation Behavior.
    Guptill DM; Chinta BS; Kaicharla T; Xu S; Hoye TR
    Polym Chem; 2021 Mar; 12(9):1310-1316. PubMed ID: 34354765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ester amide)s from Soybean Oil for Modulated Release and Bone Regeneration.
    Natarajan J; Dasgupta Q; Shetty SN; Sarkar K; Madras G; Chatterjee K
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25170-84. PubMed ID: 27599306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(trimethylene carbonate-
    Reinišová L; Hermanová S
    RSC Adv; 2020 Dec; 10(72):44111-44120. PubMed ID: 35517150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.
    Sun H; Cheng R; Deng C; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2015 Feb; 16(2):597-605. PubMed ID: 25555025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.
    You X; Gu Z; Huang J; Kang Y; Chu CC; Wu J
    Acta Biomater; 2018 Jul; 74():180-191. PubMed ID: 29803783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers.
    Fernández J; Larrañaga A; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Jul; 35():39-50. PubMed ID: 24732304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of biodegradable poly(ester amide)s with pendant amine functional groups and in vitro cellular response.
    Deng M; Wu J; Reinhart-King CA; Chu CC
    Biomacromolecules; 2009 Nov; 10(11):3037-47. PubMed ID: 19810736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release.
    Natarajan J; Madras G; Chatterjee K
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28281-28297. PubMed ID: 28766935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.
    Fonseca AC; Coelho JF; Valente JF; Correia TR; Correia IJ; Gil MH; Simões PN
    J Biomater Sci Polym Ed; 2013; 24(12):1391-409. PubMed ID: 23829454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-reinforcement and hydrolytic degradation of amorphous lactic acid based poly(ester-amide), and of its composite with sol-gel derived fibers.
    Haltia AM; Lähteenkorva K; Törmälä P; Helminen A; Tuominen J; Seppälä J; Veittola S; Ahvenlammi J
    J Mater Sci Mater Med; 2002 Oct; 13(10):903-9. PubMed ID: 15348182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of ionic charged water soluble arginine-based poly(ester amide).
    Wu J; Mutschler MA; Chu CC
    J Mater Sci Mater Med; 2011 Mar; 22(3):469-79. PubMed ID: 21287243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water insoluble cationic poly(ester amide)s: synthesis, characterization and applications.
    Wu J; Chu CC
    J Mater Chem B; 2013 Jan; 1(3):353-360. PubMed ID: 32260759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular interactions and degradation of aliphatic poly(ester amide)s derived from glycine and/or 4-amino butyric acid.
    Han SI; Kim BS; Kang SW; Shirai H; Im SS
    Biomaterials; 2003 Sep; 24(20):3453-62. PubMed ID: 12809774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Properties of Poly(ester amide)s Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer Backbone.
    Walkowiak K; Irska I; Zubkiewicz A; Dryzek J; Paszkiewicz S
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable polymers derived from amino acids.
    Domb AJ
    Biomaterials; 1990 Nov; 11(9):686-9. PubMed ID: 2090303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough and Sustainable Graft Block Copolymer Thermoplastics.
    Zhang J; Li T; Mannion AM; Schneiderman DK; Hillmyer MA; Bates FS
    ACS Macro Lett; 2016 Mar; 5(3):407-412. PubMed ID: 35614713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid synthesis of functional poly(ester amide)s through thiol-ene chemistry.
    Qu T; West KN; Rupar PA
    RSC Adv; 2023 Jul; 13(33):22928-22935. PubMed ID: 37520100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.