These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34354834)
1. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834 [TBL] [Abstract][Full Text] [Related]
2. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738 [TBL] [Abstract][Full Text] [Related]
3. Microscopic Origin of Electrochemical Capacitance in Metal-Organic Frameworks. Shin SJ; Gittins JW; Golomb MJ; Forse AC; Walsh A J Am Chem Soc; 2023 Jul; 145(26):14529-14538. PubMed ID: 37341453 [TBL] [Abstract][Full Text] [Related]
4. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397 [TBL] [Abstract][Full Text] [Related]
5. Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural and Electrical Transport Properties. Day RW; Bediako DK; Rezaee M; Parent LR; Skorupskii G; Arguilla MQ; Hendon CH; Stassen I; Gianneschi NC; Kim P; Dincă M ACS Cent Sci; 2019 Dec; 5(12):1959-1964. PubMed ID: 31893225 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Koo WT; Kim SJ; Jang JS; Kim DH; Kim ID Adv Sci (Weinh); 2019 Nov; 6(21):1900250. PubMed ID: 31728270 [TBL] [Abstract][Full Text] [Related]
7. Conductive Ni Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120 [TBL] [Abstract][Full Text] [Related]
8. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks. Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173 [TBL] [Abstract][Full Text] [Related]
9. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application. Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115 [TBL] [Abstract][Full Text] [Related]
10. Triphenylene-Bridged Trinuclear Complexes of Cu: Models for Spin Interactions in Two-Dimensional Electrically Conductive Metal-Organic Frameworks. Yang L; He X; Dincă M J Am Chem Soc; 2019 Jul; 141(26):10475-10480. PubMed ID: 31180665 [TBL] [Abstract][Full Text] [Related]
11. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors. Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517 [TBL] [Abstract][Full Text] [Related]
12. Direct Electrodeposition of Electrically Conducting Ni Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A Small; 2024 Sep; 20(36):e2401509. PubMed ID: 38698603 [TBL] [Abstract][Full Text] [Related]
13. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. Kim HC; Huh S Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017 [TBL] [Abstract][Full Text] [Related]
14. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process. Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945 [TBL] [Abstract][Full Text] [Related]
15. The Realization of Uniform Growth of Conductive MOFs on LDHs and Their High Performance in Supercapacitors. Liu L; Lu J; Zhang Y; Pang H; Zhu R Chem Asian J; 2024 Jan; 19(1):e202300819. PubMed ID: 37973612 [TBL] [Abstract][Full Text] [Related]
16. Coupling of a conductive Ni Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. Yao MS; Lv XJ; Fu ZH; Li WH; Deng WH; Wu GD; Xu G Angew Chem Int Ed Engl; 2017 Dec; 56(52):16510-16514. PubMed ID: 29071780 [TBL] [Abstract][Full Text] [Related]
18. Why conductivity is not always king - physical properties governing the capacitance of 2D metal-organic framework-based EDLC supercapacitor electrodes: a Ni Borysiewicz MA; Dou JH; Stassen I; Dincă M Faraday Discuss; 2021 Oct; 231(0):298-304. PubMed ID: 34259286 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks. Zhou S; Liu T; Strømme M; Xu C Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318387. PubMed ID: 38349735 [TBL] [Abstract][Full Text] [Related]
20. Confined Synthesis of Oriented Two-Dimensional Ni Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]