These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34354900)

  • 1. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review.
    Büscher TH; Gorb SN
    Beilstein J Nanotechnol; 2021; 12():725-743. PubMed ID: 34354900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect
    Thomas J; Gorb SN; Büscher TH
    Beilstein J Nanotechnol; 2024; 15():612-630. PubMed ID: 38887530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary effect of attachment devices in stick insects (Phasmatodea).
    Büscher TH; Gorb SN
    J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31727762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesive and frictional properties of tarsal attachment pads in two species of stick insects (Phasmatodea) with smooth and nubby euplantulae.
    Busshardt P; Wolf H; Gorb SN
    Zoology (Jena); 2012 Jun; 115(3):135-41. PubMed ID: 22578997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of age on the attachment ability of stick insects (Phasmatodea).
    Grote M; Gorb SN; Büscher TH
    Beilstein J Nanotechnol; 2024; 15():867-883. PubMed ID: 39076693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionally different pads on the same foot allow control of attachment: stick insects have load-sensitive "heel" pads for friction and shear-sensitive "toe" pads for adhesion.
    Labonte D; Federle W
    PLoS One; 2013; 8(12):e81943. PubMed ID: 24349156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence.
    Bullock JM; Drechsler P; Federle W
    J Exp Biol; 2008 Oct; 211(Pt 20):3333-43. PubMed ID: 18840668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why are so many adhesive pads hairy?
    Federle W
    J Exp Biol; 2006 Jul; 209(Pt 14):2611-21. PubMed ID: 16809452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical principles of fluid-mediated insect attachment - Shouldn't insects slip?
    Dirks JH
    Beilstein J Nanotechnol; 2014; 5():1160-6. PubMed ID: 25161849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention.
    Gorb E; Kastner V; Peressadko A; Arzt E; Gaume L; Rowe N; Gorb S
    J Exp Biol; 2004 Aug; 207(Pt 17):2947-63. PubMed ID: 15277550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-transmitting structures in the digital pads of the tree frog Hyla cinerea: a functional interpretation.
    Langowski JKA; Schipper H; Blij A; van den Berg FT; Gussekloo SWS; van Leeuwen JL
    J Anat; 2018 Oct; 233(4):478-495. PubMed ID: 30123974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae).
    Büscher TH; Bank S; Cumming RT; Gorb SN; Bradler S
    BMC Ecol Evol; 2023 May; 23(1):17. PubMed ID: 37161371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea).
    Büscher TH; Kryuchkov M; Katanaev VL; Gorb SN
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29925583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface contact and design of fibrillar 'friction pads' in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion.
    Labonte D; Williams JA; Federle W
    J R Soc Interface; 2014 May; 11(94):20140034. PubMed ID: 24554580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater attachment in current: the role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae).
    Ditsche-Kuru P; Koop JH; Gorb SN
    J Exp Biol; 2010 Jun; 213(11):1950-9. PubMed ID: 20472782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance.
    Drechsler P; Federle W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Nov; 192(11):1213-22. PubMed ID: 16835787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant stick insects reveal unique ontogenetic changes in biological attachment devices.
    Gottardo M; Vallotto D; Beutel RG
    Arthropod Struct Dev; 2015 Mar; 44(2):195-9. PubMed ID: 25601633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural design and biomechanics of friction-based releasable attachment devices in insects.
    Gorb SN; Beutel RG; Gorb EV; Jiao Y; Kastner V; Niederegger S; Popov VL; Scherge M; Schwarz U; Vötsch W
    Integr Comp Biol; 2002 Dec; 42(6):1127-39. PubMed ID: 21680397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree frog attachment: mechanisms, challenges, and perspectives.
    Langowski JKA; Dodou D; Kamperman M; van Leeuwen JL
    Front Zool; 2018; 15():32. PubMed ID: 30154908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment performance of stick insects (Phasmatodea) on convex substrates.
    Büscher TH; Becker M; Gorb SN
    J Exp Biol; 2020 Sep; 223(Pt 17):. PubMed ID: 32723763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.