BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3435508)

  • 1. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H
    Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion.
    Griese M; Perlitz V; Jüngling E; Kammermeier H
    J Mol Cell Cardiol; 1988 Dec; 20(12):1189-201. PubMed ID: 3249307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts.
    Kammermeier H; Roeb E; Jüngling E; Meyer B
    J Mol Cell Cardiol; 1990 Jun; 22(6):707-13. PubMed ID: 2231738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM; Taylor DJ; Radda GK
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients.
    Fiolet JW; Baartscheer A; Schumacher CA; Coronel R; ter Welle HF
    J Mol Cell Cardiol; 1984 Nov; 16(11):1023-36. PubMed ID: 6520874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?
    Kammermeier H; Schmidt P; Jüngling E
    J Mol Cell Cardiol; 1982 May; 14(5):267-77. PubMed ID: 7131563
    [No Abstract]   [Full Text] [Related]  

  • 8. [The effect of hypoxic preconditioning on myocardium energy metabolism].
    Wu CL; Lin LZ; Lu Z; Huang YR; Zhuang JG; Zhou ZN
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb; 17(1):43-6. PubMed ID: 21171441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart.
    Headrick JP; Willis RJ
    J Mol Cell Cardiol; 1991 Sep; 23(9):991-9. PubMed ID: 1658349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart.
    Stecyk JA; Bock C; Overgaard J; Wang T; Farrell AP; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2009 Sep; 297(3):R756-68. PubMed ID: 19587113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ATP metabolites in induction of incomplete recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Miyake K; Fukumoto T
    Can J Cardiol; 1988 May; 4(4):193-200. PubMed ID: 3395917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytoplasmic free energy of ATP hydrolysis in isolated rod-shaped rat ventricular myocytes.
    ter Welle HF; Baartscheer A; Fiolet JW; Schumacher CA
    J Mol Cell Cardiol; 1988 May; 20(5):435-41. PubMed ID: 3210251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tanshinone VI derivatives on post-hypoxic contractile dysfunction of perfused rat hearts.
    Yagi A; Okamura N; Tanonaka K; Takeo S
    Planta Med; 1994 Oct; 60(5):405-9. PubMed ID: 7997465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of befunolol on post-hypoxic recovery of cardiac contractility and myocardial metabolism.
    Maruyama Y; Tanonaka K; Niwa T; Takeo S
    Arzneimittelforschung; 1992 Dec; 42(12):1423-9. PubMed ID: 1363193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of adaptation to exposure to short-term stress on indices of resistance of energy metabolism and contractile function of the myocardium to acute hypoxic hypoxia and reoxygenation].
    Kopylov ON; Golubeva LIu; Saltykova VA; Meerson FZ
    Biull Eksp Biol Med; 1990 Sep; 110(9):244-6. PubMed ID: 2268705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Tazuma Y; Miyake K; Murai R
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1131-8. PubMed ID: 3694529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of the creatine kinase reaction to determine free energy change of ATP hydrolysis in anoxic cardiomyocytes.
    Siegmund B; Koop A; Piper HM
    Pflugers Arch; 1989 Feb; 413(4):435-7. PubMed ID: 2928097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardioprotective action of alpha-blocking agents, phentolamine and bunazosin, on hypoxic and reoxygenated myocardium.
    Takeo S; Tanonaka K; Matsumoto M; Miyake K; Minematsu R
    J Pharmacol Exp Ther; 1988 Aug; 246(2):674-81. PubMed ID: 2900329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial effects of yohimbine on posthypoxic recovery of cardiac function and myocardial metabolism in isolated perfused rabbit hearts.
    Takeo S; Hayashi M; Tanonaka K; Yamamoto K
    J Pharmacol Exp Ther; 1991 Jul; 258(1):94-102. PubMed ID: 1677045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.