These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 34355100)
1. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Danouche M; El Ghachtouli N; El Arroussi H Heliyon; 2021 Jul; 7(7):e07609. PubMed ID: 34355100 [TBL] [Abstract][Full Text] [Related]
2. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
3. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802 [TBL] [Abstract][Full Text] [Related]
5. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Dayana Priyadharshini S; Suresh Babu P; Manikandan S; Subbaiya R; Govarthanan M; Karmegam N Environ Pollut; 2021 Dec; 290():117989. PubMed ID: 34433126 [TBL] [Abstract][Full Text] [Related]
6. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Kumar V; Dwivedi SK Environ Sci Pollut Res Int; 2021 Mar; 28(9):10375-10412. PubMed ID: 33410020 [TBL] [Abstract][Full Text] [Related]
7. Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water. Ugya YA; Hasan DB; Tahir SM; Imam TS; Ari HA; Hua X Int J Phytoremediation; 2021; 23(11):1175-1183. PubMed ID: 33563031 [TBL] [Abstract][Full Text] [Related]
8. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. Maharajan T; Chellasamy G; Tp AK; Ceasar SA; Yun K Chemosphere; 2023 Jan; 310():136881. PubMed ID: 36257391 [TBL] [Abstract][Full Text] [Related]
9. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Leong YK; Chang JS Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940 [TBL] [Abstract][Full Text] [Related]
10. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. Milano F; Giotta L; Lambreva MD Plant Physiol Biochem; 2024 Nov; 216():109090. PubMed ID: 39243581 [TBL] [Abstract][Full Text] [Related]
11. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Gulzar ABM; Mazumder PB Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490 [TBL] [Abstract][Full Text] [Related]
12. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. Chen D; Wang G; Chen C; Feng Z; Jiang Y; Yu H; Li M; Chao Y; Tang Y; Wang S; Qiu R J Hazard Mater; 2023 Jul; 454():131498. PubMed ID: 37146335 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Yang Z; Yang F; Liu JL; Wu HT; Yang H; Shi Y; Liu J; Zhang YF; Luo YR; Chen KM Sci Total Environ; 2022 Feb; 809():151099. PubMed ID: 34688763 [TBL] [Abstract][Full Text] [Related]
15. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. Rambabu K; Avornyo A; Gomathi T; Thanigaivelan A; Show PL; Banat F Bioresour Technol; 2023 Jan; 367():128257. PubMed ID: 36343781 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. Chakravorty M; Nanda M; Bisht B; Sharma R; Kumar S; Mishra A; Vlaskin MS; Chauhan PK; Kumar V Aquat Toxicol; 2023 Jul; 260():106555. PubMed ID: 37196506 [TBL] [Abstract][Full Text] [Related]
17. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater. Zhou XR; Wang R; Tang CC; Varrone C; He ZW; Li ZH; Wang XC Chemosphere; 2023 Dec; 345():140448. PubMed ID: 37839742 [TBL] [Abstract][Full Text] [Related]
18. Emerging role of microalgae in heavy metal bioremediation. Manikandan A; Suresh Babu P; Shyamalagowri S; Kamaraj M; Muthukumaran P; Aravind J J Basic Microbiol; 2022 Mar; 62(3-4):330-347. PubMed ID: 34724223 [TBL] [Abstract][Full Text] [Related]
19. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. Aravind MK; Vignesh NS; Gayathri S; Anjitha N; Athira KM; Gunaseelan S; Arunkumar M; Sanjaykumar A; Karthikumar S; Ganesh Moorthy IM; Ashokkumar B; Pugazhendhi A; Varalakshmi P Chemosphere; 2023 Feb; 313():137310. PubMed ID: 36460155 [TBL] [Abstract][Full Text] [Related]
20. The cell wall of green microalgae and its role in heavy metal removal. Spain O; Plöhn M; Funk C Physiol Plant; 2021 Oct; 173(2):526-535. PubMed ID: 33764544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]