BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 34355526)

  • 41. AMPK: a nutrient and energy sensor that maintains energy homeostasis.
    Hardie DG; Ross FA; Hawley SA
    Nat Rev Mol Cell Biol; 2012 Mar; 13(4):251-62. PubMed ID: 22436748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases.
    Amato S; Man HY
    Cell Cycle; 2011 Oct; 10(20):3452-60. PubMed ID: 22067656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?
    Dienel GA
    Neurochem Int; 2013 Oct; 63(4):244-58. PubMed ID: 23838211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AMPK-mediated regulation of neuronal metabolism and function in brain diseases.
    Liu YJ; Chern Y
    J Neurogenet; 2015; 29(2-3):50-8. PubMed ID: 26119401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic functions of AMPK: aspects of structure and of natural mutations in the regulatory gamma subunits.
    Moffat C; Harper ME
    IUBMB Life; 2010 Oct; 62(10):739-45. PubMed ID: 21031502
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease.
    Grahame Hardie D
    J Intern Med; 2014 Dec; 276(6):543-59. PubMed ID: 24824502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease.
    Vázquez-Manrique RP; Farina F; Cambon K; Dolores Sequedo M; Parker AJ; Millán JM; Weiss A; Déglon N; Neri C
    Hum Mol Genet; 2016 Mar; 25(6):1043-58. PubMed ID: 26681807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines.
    Gavillet M; Allaman I; Magistretti PJ
    Glia; 2008 Jul; 56(9):975-89. PubMed ID: 18383346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents.
    Walls AB; Heimbürger CM; Bouman SD; Schousboe A; Waagepetersen HS
    Neuroscience; 2009 Jan; 158(1):284-92. PubMed ID: 19000744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glucose, glycolysis, and neurodegenerative diseases.
    Tang BL
    J Cell Physiol; 2020 Nov; 235(11):7653-7662. PubMed ID: 32239718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives.
    Beard E; Lengacher S; Dias S; Magistretti PJ; Finsterwald C
    Front Physiol; 2021; 12():825816. PubMed ID: 35087428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons.
    Claret M; Smith MA; Batterham RL; Selman C; Choudhury AI; Fryer LG; Clements M; Al-Qassab H; Heffron H; Xu AW; Speakman JR; Barsh GS; Viollet B; Vaulont S; Ashford ML; Carling D; Withers DJ
    J Clin Invest; 2007 Aug; 117(8):2325-36. PubMed ID: 17671657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How glycogen sustains brain function: A plausible allosteric signaling pathway mediated by glucose phosphates.
    DiNuzzo M
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1452-1459. PubMed ID: 31208240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives.
    Viollet B; Guigas B; Leclerc J; Hébrard S; Lantier L; Mounier R; Andreelli F; Foretz M
    Acta Physiol (Oxf); 2009 May; 196(1):81-98. PubMed ID: 19245656
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase.
    Jaswal JS; Gandhi M; Finegan BA; Dyck JR; Clanachan AS
    Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1978-85. PubMed ID: 17172269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.
    Potter WB; O'Riordan KJ; Barnett D; Osting SM; Wagoner M; Burger C; Roopra A
    PLoS One; 2010 Feb; 5(2):e8996. PubMed ID: 20126541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms.
    Alberini CM; Cruz E; Descalzi G; Bessières B; Gao V
    Glia; 2018 Jun; 66(6):1244-1262. PubMed ID: 29076603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
    Magistretti PJ; Pellerin L
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis.
    Olivier S; Pochard C; Diounou H; Castillo V; Divoux J; Alcantara J; Leclerc J; Guilmeau S; Huet C; Charifi W; Varin TV; Daniel N; Foretz M; Neunlist M; Salomon BL; Ghosh P; Marette A; Rolli-Derkinderen M; Viollet B
    Mol Metab; 2021 May; 47():101183. PubMed ID: 33548500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.