These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 34355537)
1. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity. Branstetter E; Duff RJ; Kuhns S; Padaki R FEBS Open Bio; 2021 Nov; 11(11):2943-2949. PubMed ID: 34355537 [TBL] [Abstract][Full Text] [Related]
2. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
3. Modulating IgG effector function by Fc glycan engineering. Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219 [TBL] [Abstract][Full Text] [Related]
4. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Scallon BJ; Tam SH; McCarthy SG; Cai AN; Raju TS Mol Immunol; 2007 Mar; 44(7):1524-34. PubMed ID: 17045339 [TBL] [Abstract][Full Text] [Related]
5. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. Liu L J Pharm Sci; 2015 Jun; 104(6):1866-1884. PubMed ID: 25872915 [TBL] [Abstract][Full Text] [Related]
7. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
8. Engineering host cell lines to reduce terminal sialylation of secreted antibodies. Naso MF; Tam SH; Scallon BJ; Raju TS MAbs; 2010; 2(5):519-27. PubMed ID: 20716959 [TBL] [Abstract][Full Text] [Related]
9. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Wada R; Matsui M; Kawasaki N MAbs; 2019; 11(2):350-372. PubMed ID: 30466347 [TBL] [Abstract][Full Text] [Related]
10. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Raju TS Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225 [TBL] [Abstract][Full Text] [Related]
11. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. Thomann M; Schlothauer T; Dashivets T; Malik S; Avenal C; Bulau P; Rüger P; Reusch D PLoS One; 2015; 10(8):e0134949. PubMed ID: 26266936 [TBL] [Abstract][Full Text] [Related]
12. Impact of Fc N-linked glycans on in vivo clearance of an immunoglobulin G1 antibody produced by NS0 cell line. Kim J; Luo H; White W; Rees W; Venkat R; Albarghouthi M MAbs; 2020; 12(1):1844928. PubMed ID: 33171078 [TBL] [Abstract][Full Text] [Related]
13. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants. Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484 [TBL] [Abstract][Full Text] [Related]
14. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors. Blundell P; Pleass R Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483 [TBL] [Abstract][Full Text] [Related]
15. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Hodoniczky J; Zheng YZ; James DC Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047 [TBL] [Abstract][Full Text] [Related]
16. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. Pereira NA; Chan KF; Lin PC; Song Z MAbs; 2018 Jul; 10(5):693-711. PubMed ID: 29733746 [TBL] [Abstract][Full Text] [Related]
17. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Harbison A; Fadda E Glycobiology; 2020 May; 30(6):407-414. PubMed ID: 31829411 [TBL] [Abstract][Full Text] [Related]
18. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113 [TBL] [Abstract][Full Text] [Related]
19. Impact of Fc N-glycan sialylation on IgG structure. Zhang Z; Shah B; Richardson J MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531 [TBL] [Abstract][Full Text] [Related]
20. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. Chung AW; Crispin M; Pritchard L; Robinson H; Gorny MK; Yu X; Bailey-Kellogg C; Ackerman ME; Scanlan C; Zolla-Pazner S; Alter G AIDS; 2014 Nov; 28(17):2523-30. PubMed ID: 25160934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]