These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements. Monia Kabandana GK; Jones CG; Sharifi SK; Chen C ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications. Feuerbach T; Kock S; Thommes M Pharm Dev Technol; 2018 Dec; 23(10):1136-1145. PubMed ID: 29938558 [TBL] [Abstract][Full Text] [Related]
9. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Beauchamp MJ; Nordin GP; Woolley AT Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085 [TBL] [Abstract][Full Text] [Related]
10. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609 [TBL] [Abstract][Full Text] [Related]
11. 3D Printed Microfluidics. Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017 [TBL] [Abstract][Full Text] [Related]
12. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery. Long J; Gholizadeh H; Lu J; Bunt C; Seyfoddin A Curr Pharm Des; 2017; 23(3):433-439. PubMed ID: 27784251 [TBL] [Abstract][Full Text] [Related]
13. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Rehmani MAA; Jaywant SA; Arif KM Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727 [TBL] [Abstract][Full Text] [Related]
14. Design and characterization of a 3D-printed staggered herringbone mixer. Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813 [TBL] [Abstract][Full Text] [Related]
15. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134 [TBL] [Abstract][Full Text] [Related]
16. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices. Amini A; Guijt RM; Themelis T; De Vos J; Eeltink S J Chromatogr A; 2023 Mar; 1692():463842. PubMed ID: 36745962 [TBL] [Abstract][Full Text] [Related]
17. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426 [TBL] [Abstract][Full Text] [Related]
18. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851 [TBL] [Abstract][Full Text] [Related]
19. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Musgrove HB; Catterton MA; Pompano RR Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices. Alapan Y; Hasan MN; Shen R; Gurkan UA J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]