These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 34355724)

  • 21. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.
    Alhijjaj M; Belton P; Qi S
    Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays.
    Novotny J; Svobodova Z; Ilicova M; Hruskova D; Kostalova J; Bilkova Z; Foret F
    Mikrochim Acta; 2024 Jul; 191(8):442. PubMed ID: 38954238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations.
    Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fused deposition modeling three-dimensional printing of flexible polyurethane intravaginal rings with controlled tunable release profiles for multiple active drugs.
    Chen Y; Traore YL; Walker L; Yang S; Ho EA
    Drug Deliv Transl Res; 2022 Apr; 12(4):906-924. PubMed ID: 35211869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed fiber optic faceplates by custom controlled fused deposition modeling.
    Wang Y; Gawedzinski J; Pawlowski ME; Tkaczyk TS
    Opt Express; 2018 Jun; 26(12):15362-15376. PubMed ID: 30114785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.