These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3435580)

  • 1. New synthetic approach and iron chelating studies of 1-alkyl-2-methyl-3-hydroxypyrid-4-ones.
    Kontoghiorghes GJ; Sheppard L; Chambers S
    Arzneimittelforschung; 1987 Oct; 37(10):1099-102. PubMed ID: 3435580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orally active alpha-ketohydroxypyridine iron chelators: studies in mice.
    Kontoghiorghes GJ
    Mol Pharmacol; 1986 Dec; 30(6):670-3. PubMed ID: 3785144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chelators affecting iron absorption in mice.
    Kontoghiorghes GJ
    Arzneimittelforschung; 1990 Dec; 40(12):1332-5. PubMed ID: 2095129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, physicochemical properties, and evaluation of N-substituted-2-alkyl-3-hydroxy-4(1H)-pyridinones.
    Rai BL; Dekhordi LS; Khodr H; Jin Y; Liu Z; Hider RC
    J Med Chem; 1998 Aug; 41(18):3347-59. PubMed ID: 9719587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of a new generation of orally active alpha-ketohydroxypyridine iron chelators intended for use in the treatment of iron overload.
    Kontoghiorghes GJ; Barr J; Nortey P; Sheppard L
    Am J Hematol; 1993 Apr; 42(4):340-9. PubMed ID: 8493983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structure and biological and pharmacological properties of 3-hydroxy-2-methyl-1-(beta-D-ribofuranosyl or pyranosyl)-4-pyridinone: potential iron overload drugs for oral administration.
    Liu G; Bruenger FW; Miller SC; Arif AM
    Bioorg Med Chem Lett; 1998 Nov; 8(21):3077-80. PubMed ID: 9873679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy.
    Devanur LD; Evans RW; Evans PJ; Hider RC
    Biochem J; 2008 Jan; 409(2):439-47. PubMed ID: 17919118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of novel 1-alkyl-3-hydroxy-2-methylpyrid-4-one chelators on uptake and release of iron from macrophages.
    Brock JH; Licéaga J; Arthur HM; Kontoghiorghes GJ
    Am J Hematol; 1990 May; 34(1):21-5. PubMed ID: 2327400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characteristics of 1-phenyl-3-methyl-4-acylpyrazol-5-ones iron chelators.
    Filipský T; Mladěnka P; Macáková K; Hrdina R; Saso L; Marchetti F; Pettinari C
    Biochimie; 2012 Jan; 94(1):125-31. PubMed ID: 21986369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of iron mobilization from haemosiderin, ferritin and iron(III) precipitates by chelators.
    Kontoghiorghes GJ; Chambers S; Hoffbrand AV
    Biochem J; 1987 Jan; 241(1):87-92. PubMed ID: 3566714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orally active alpha-ketohydroxypyridine iron chelators: effects on iron and other metal mobilisations.
    Kontoghiorghes GJ
    Acta Haematol; 1987; 78(2-3):212-6. PubMed ID: 3120474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between deferiprone, desferrioxamine and other chelators for iron and the effect of other metals.
    Sheppard LN; Kontoghiorghes GJ
    Arzneimittelforschung; 1993 Jun; 43(6):659-63. PubMed ID: 8352819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron chelation studies using desferrioxamine and the potential oral chelator, 1,2-dimethyl-3-hydroxypyrid-4-one, in normal and iron loaded rats.
    Kontoghiorghes GJ; Sheppard L; Hoffbrand AV; Charalambous J; Tikerpae J; Pippard MJ
    J Clin Pathol; 1987 Apr; 40(4):404-8. PubMed ID: 3584483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The study of iron mobilisation from transferrin using alpha-ketohydroxy heteroaromatic chelators.
    Kontoghiorghes GJ
    Biochim Biophys Acta; 1986 Jan; 869(2):141-6. PubMed ID: 3942757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role of in vitro iron bioavailability studies in combatting iron deficiency: a study of the effects of phosvitin on iron mobilization from pinto beans.
    Reddy MB; Chidambaram MV; Fonseca J; Bates GW
    Clin Physiol Biochem; 1986; 4(1):78-86. PubMed ID: 3006970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron binding dendrimers: a novel approach for the treatment of haemochromatosis.
    Zhou T; Neubert H; Liu DY; Liu ZD; Ma YM; Kong XL; Luo W; Mark S; Hider RC
    J Med Chem; 2006 Jul; 49(14):4171-82. PubMed ID: 16821777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Current possibilities in the therapy of iron overload].
    Cermák J
    Vnitr Lek; 1994 Sep; 40(9):605-8. PubMed ID: 7975366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The iron chelators desferrioxamine and 1-alkyl-2-methyl-3-hydroxypyrid-4-ones inhibit vascular prostacyclin synthesis in vitro.
    Jeremy JY; Kontoghiorghes GJ; Hoffbrand AV; Dandona P
    Biochem J; 1988 Aug; 254(1):239-44. PubMed ID: 3140797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity.
    Chaston TB; Richardson DR
    Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and in vitro trypanocidal activity of some novel iron chelating agents.
    Singh PK; Jones MM; Lane JE; Nesset A; Zimmerman LJ; Ribeiro-Rodrigues R; Richter A; Stenger MR; Carter CE
    Arzneimittelforschung; 1997 Mar; 47(3):311-5. PubMed ID: 9105552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.