These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34355898)

  • 1. Band Gap Engineering in Acceptor-Donor-Acceptor Boron Difluoride Formazanates.
    Dhindsa JS; Buguis FL; Anghel M; Gilroy JB
    J Org Chem; 2021 Sep; 86(17):12064-12074. PubMed ID: 34355898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Properties of Donor-Acceptor and Acceptor-Donor-Acceptor Boron Difluoride Hydrazones
    Cappello D; Buguis FL; Gilroy JB
    ACS Omega; 2022 Sep; 7(36):32727-32739. PubMed ID: 36120012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A π-conjugated inorganic polymer constructed from boron difluoride formazanates and platinum(ii) diynes.
    Dhindsa JS; Maar RR; Barbon SM; Olivia Avilés M; Powell ZK; Lagugné-Labarthet F; Gilroy JB
    Chem Commun (Camb); 2018 Jun; 54(50):6899-6902. PubMed ID: 29796545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron difluoride formazanates with thiophene and 3,4-ethylenedioxythiophene capping and their electrochemical polymerization.
    Kumar C; Agrawal AR; Ghosh NG; Karmakar HS; Das S; Kumar NR; Banewar VW; Zade SS
    Dalton Trans; 2020 Oct; 49(38):13202-13206. PubMed ID: 32966457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics.
    Shafiq UrRehman ; Alam A; Bibi S; Sadaf S; Khan SR; Shoaib M; Khan AQ; Khan M; UrRehman W
    J Mol Model; 2020 May; 26(6):154. PubMed ID: 32451633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blending the Optical and Redox Properties of Oligoynes and Boron Difluoride Formazanates.
    Dhindsa JS; Cotterill EL; Buguis FL; Anghel M; Boyle PD; Gilroy JB
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202208502. PubMed ID: 35857378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells.
    Rutledge LR; McAfee SM; Welch GC
    J Phys Chem A; 2014 Sep; 118(36):7939-51. PubMed ID: 25111089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-π-A conjugated molecules for optoelectronic applications.
    Kim TD; Lee KS
    Macromol Rapid Commun; 2015 Jun; 36(11):943-58. PubMed ID: 25820642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell.
    Salim M; Rafiq M; El-Badry YA; Khera RA; Khalid M; Iqbal J
    J Mol Model; 2021 Oct; 27(11):316. PubMed ID: 34628569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinoid-Aromatic Resonance for Very Small Optical Energy Gaps in Small-Molecule Organic Semiconductors: A Naphthodithiophenedione-oligothiophene Triad System.
    Kawabata K; Takimiya K
    Chemistry; 2021 Nov; 27(63):15660-15670. PubMed ID: 34529287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies on donor-acceptor based macrocycles for organic solar cell applications.
    Haseena S; Ravva MK
    Sci Rep; 2022 Sep; 12(1):15043. PubMed ID: 36057668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chalcogen atoms on the electronic band gaps of the quinoxaline containing donor-acceptor-donor type semiconducting polymers: a systematic DFT investigation.
    Kayi H; Şen E; Özkılınç Ö
    J Mol Model; 2024 May; 30(6):179. PubMed ID: 38777938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Enhancement of π-Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding.
    Liu CH; Niazi MR; Perepichka DF
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17312-17321. PubMed ID: 31560447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of donor-acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes.
    Hudson ZM; Wang S
    Acc Chem Res; 2009 Oct; 42(10):1584-96. PubMed ID: 19558183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.
    Randell NM; Fransishyn KM; Kelly TL
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24788-24796. PubMed ID: 28670896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-processable donor-acceptor polymers with modular electronic properties and very narrow bandgaps.
    Foster ME; Zhang BA; Murtagh D; Liu Y; Sfeir MY; Wong BM; Azoulay JD
    Macromol Rapid Commun; 2014 Sep; 35(17):1516-21. PubMed ID: 24979470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on optoelectronic and charge transport properties of diketopyrrolopyrrole-based A-D-A-D-A structure molecules for organic solar cells.
    Luo D; Jin R; Han X; Li K
    J Mol Model; 2019 Nov; 25(11):339. PubMed ID: 31705321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications.
    Sun X; Liu Y; Xu X; Yang C; Yu G; Chen S; Zhao Z; Qiu W; Li Y; Zhu D
    J Phys Chem B; 2005 Jun; 109(21):10786-92. PubMed ID: 16852311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Principles for the Acceptor Units in Donor-Acceptor Conjugated Polymers.
    Hacıefendioǧlu T; Yildirim E
    ACS Omega; 2022 Nov; 7(43):38969-38978. PubMed ID: 36340112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.