BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34356071)

  • 1. Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity.
    Petroll R; Schreiber M; Finke H; Cock JM; Gould SB; Rensing SA
    Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae.
    Yang EC; Kim KM; Kim SY; Lee J; Boo GH; Lee JH; Nelson WA; Yi G; Schmidt WE; Fredericq S; Boo SM; Bhattacharya D; Yoon HS
    Genome Biol Evol; 2015 Aug; 7(8):2394-406. PubMed ID: 26245677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants.
    Lee J; Cho CH; Park SI; Choi JW; Song HS; West JA; Bhattacharya D; Yoon HS
    BMC Biol; 2016 Sep; 14():75. PubMed ID: 27589960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence time estimates and the evolution of major lineages in the florideophyte red algae.
    Yang EC; Boo SM; Bhattacharya D; Saunders GW; Knoll AH; Fredericq S; Graf L; Yoon HS
    Sci Rep; 2016 Feb; 6():21361. PubMed ID: 26892537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta.
    Takaichi S; Yokoyama A; Mochimaru M; Uchida H; Murakami A
    J Phycol; 2016 Jun; 52(3):329-38. PubMed ID: 27273528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-photosynthetic predators are sister to red algae.
    Gawryluk RMR; Tikhonenkov DV; Hehenberger E; Husnik F; Mylnikov AP; Keeling PJ
    Nature; 2019 Aug; 572(7768):240-243. PubMed ID: 31316212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta).
    Freese JM; Lane CE
    Mol Biochem Parasitol; 2017 Jun; 214():105-111. PubMed ID: 28427949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and expression of core SWI/SNF genes in red algae.
    Stiller JW; Yang C; Collén J; Kowalczyk N; Thompson BE
    J Phycol; 2018 Dec; 54(6):879-887. PubMed ID: 30288746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red Algal Phylogenomics Provides a Robust Framework for Inferring Evolution of Key Metabolic Pathways.
    Qiu H; Yoon HS; Bhattacharya D
    PLoS Curr; 2016 Dec; 8():. PubMed ID: 28018750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes.
    van Beveren F; Eme L; López-García P; Ciobanu M; Moreira D
    Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35289373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden biodiversity of the extremophilic Cyanidiales red algae.
    Ciniglia C; Yoon HS; Pollio A; Pinto G; Bhattacharya D
    Mol Ecol; 2004 Jul; 13(7):1827-38. PubMed ID: 15189206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terpene Biosynthesis in Red Algae Is Catalyzed by Microbial Type But Not Typical Plant Terpene Synthases.
    Wei G; Jia Q; Chen X; Köllner TG; Bhattacharya D; Wong GK; Gershenzon J; Chen F
    Plant Physiol; 2019 Feb; 179(2):382-390. PubMed ID: 30538166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordovician origin and subsequent diversification of the brown algae.
    Choi SW; Graf L; Choi JW; Jo J; Boo GH; Kawai H; Choi CG; Xiao S; Knoll AH; Andersen RA; Yoon HS
    Curr Biol; 2024 Feb; 34(4):740-754.e4. PubMed ID: 38262417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida.
    Liang H; Wei T; Xu Y; Li L; Kumar Sahu S; Wang H; Li H; Fu X; Zhang G; Melkonian M; Liu X; Wang S; Liu H
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known.
    Muñoz-Gómez SA; Mejía-Franco FG; Durnin K; Colp M; Grisdale CJ; Archibald JM; Slamovits CH
    Curr Biol; 2017 Jun; 27(11):1677-1684.e4. PubMed ID: 28528908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete mitochondrial genome of agar-producing red alga Gracilariopsis chorda (Gracilariales).
    Yang EC; Kim KM; Kim SY; Yoon HS
    Mitochondrial DNA; 2014 Oct; 25(5):339-41. PubMed ID: 23789772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta).
    Yoon HS; Ciniglia C; Wu M; Comeron JM; Pinto G; Pollio A; Bhattacharya D
    BMC Evol Biol; 2006 Oct; 6():78. PubMed ID: 17022817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome.
    Preuss M; Verbruggen H; Zuccarello GC
    J Phycol; 2020 Aug; 56(4):1006-1018. PubMed ID: 32215918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes.
    Chan CX; Yang EC; Banerjee T; Yoon HS; Martone PT; Estevez JM; Bhattacharya D
    Curr Biol; 2011 Feb; 21(4):328-33. PubMed ID: 21315598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red Algal Mitochondrial Genomes Are More Complete than Previously Reported.
    Salomaki ED; Lane CE
    Genome Biol Evol; 2017 Jan; 9(1):48-63. PubMed ID: 28175279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.