BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34356401)

  • 1. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum corrections to the entropy and its application in the study of quantum Carnot engines.
    Qiu T; Fei Z; Pan R; Quan HT
    Phys Rev E; 2020 Mar; 101(3-1):032113. PubMed ID: 32289969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.
    Jesudason CG
    PLoS One; 2016; 11(1):e0145026. PubMed ID: 26760507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S
    Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy, Carnot Cycle, and Information Theory.
    Martinelli M
    Entropy (Basel); 2018 Dec; 21(1):. PubMed ID: 33266719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A History of Thermodynamics: The Missing Manual.
    Saslow WM
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.
    Laliberté F; Zika J; Mudryk L; Kushner PJ; Kjellsson J; Döös K
    Science; 2015 Jan; 347(6221):540-3. PubMed ID: 25635098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Carnot Cycle, Reversibility and Entropy.
    Sands D
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34202081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams.
    Koyanagi S; Tanimura Y
    J Chem Phys; 2022 Aug; 157(8):084110. PubMed ID: 36050026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning Entropy with Action Mechanics: Predicting Chemical Reaction Rates and Gaseous Equilibria of Reactions of Hydrogen from Molecular Properties.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of Heat and Thermal Energy: From Caloric to Carnot's Reflections, to Entropy, Exergy, Entransy and Beyond.
    Kostic MM
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of natural selection II: Chemical Carnot cycles.
    Smith E
    J Theor Biol; 2008 May; 252(2):198-212. PubMed ID: 18367209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and optimization of a quantum analog of the Carnot cycle.
    Xiao G; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012118. PubMed ID: 26274135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.