These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34356433)

  • 1. Single-Particle Tracking Reveals Anti-Persistent Subdiffusion in Cell Extracts.
    Speckner K; Weiss M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids.
    Weiss M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010101. PubMed ID: 23944389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resampling single-particle tracking data eliminates localization errors and reveals proper diffusion anomalies.
    Weiss M
    Phys Rev E; 2019 Oct; 100(4-1):042125. PubMed ID: 31770925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent subdiffusion inherent to single particle tracking.
    Martin DS; Forstner MB; Käs JA
    Biophys J; 2002 Oct; 83(4):2109-17. PubMed ID: 12324428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Gaussian anomalous diffusion of optical vortices.
    Gong J; Li Q; Zeng S; Wang J
    Phys Rev E; 2024 Feb; 109(2-1):024111. PubMed ID: 38491579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying anomalous diffusion in the plasma membrane.
    Krapf D
    Curr Top Membr; 2015; 75():167-207. PubMed ID: 26015283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges in determining anomalous diffusion in crowded fluids.
    Hellmann M; Klafter J; Heermann DW; Weiss M
    J Phys Condens Matter; 2011 Jun; 23(23):234113. PubMed ID: 21613702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the type of anomalous diffusion with single-particle tracking.
    Ernst D; Köhler J; Weiss M
    Phys Chem Chem Phys; 2014 May; 16(17):7686-91. PubMed ID: 24651929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the origin of anomalous diffusion in crowded fluids.
    Szymanski J; Weiss M
    Phys Rev Lett; 2009 Jul; 103(3):038102. PubMed ID: 19659323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.
    Renner M; Wang L; Levi S; Hennekinne L; Triller A
    Biophys J; 2017 Dec; 113(11):2452-2463. PubMed ID: 29211999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous transport in the crowded world of biological cells.
    Höfling F; Franosch T
    Rep Prog Phys; 2013 Apr; 76(4):046602. PubMed ID: 23481518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion of single particles in cytoplasm.
    Regner BM; Vučinić D; Domnisoru C; Bartol TM; Hetzer MW; Tartakovsky DM; Sejnowski TJ
    Biophys J; 2013 Apr; 104(8):1652-60. PubMed ID: 23601312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of single particle trajectories: mean maximal excursion method.
    Tejedor V; Bénichou O; Voituriez R; Jungmann R; Simmel F; Selhuber-Unkel C; Oddershede LB; Metzler R
    Biophys J; 2010 Apr; 98(7):1364-72. PubMed ID: 20371337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian particles on rough substrates: relation between intermediate subdiffusion and asymptotic long-time diffusion.
    Hanes RD; Schmiedeberg M; Egelhaaf SU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062133. PubMed ID: 24483412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.