BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 34356638)

  • 1. Prion-Like Proteins in Phase Separation and Their Link to Disease.
    Sprunger ML; Jackrel ME
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation.
    Agarwal A; Mukhopadhyay S
    J Mol Biol; 2022 Jan; 434(1):167368. PubMed ID: 34808226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms and Functions of Spatial Protein Quality Control.
    Sontag EM; Samant RS; Frydman J
    Annu Rev Biochem; 2017 Jun; 86():97-122. PubMed ID: 28489421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases.
    Sarnataro D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30304819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Do Yeast Cells Contend with Prions?
    Wickner RB; Edskes HK; Son M; Wu S; Niznikiewicz M
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain.
    Kamps J; Lin YH; Oliva R; Bader V; Winter R; Winklhofer KF; Tatzelt J
    J Biol Chem; 2021 Jul; 297(1):100860. PubMed ID: 34102212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion.
    Agarwal A; Arora L; Rai SK; Avni A; Mukhopadhyay S
    Nat Commun; 2022 Mar; 13(1):1154. PubMed ID: 35241680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior.
    Franzmann TM; Alberti S
    J Biol Chem; 2019 May; 294(18):7128-7136. PubMed ID: 29921587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.
    March ZM; King OD; Shorter J
    Brain Res; 2016 Sep; 1647():9-18. PubMed ID: 26996412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation.
    Silva JL; Vieira TC; Cordeiro Y; de Oliveira GAP
    Curr Opin Struct Biol; 2022 Apr; 73():102346. PubMed ID: 35247749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Model to Study Amyloid Cross-Toxicity.
    Henriquez G; Mendez L; Narayan M
    ACS Chem Neurosci; 2020 Feb; 11(3):228-230. PubMed ID: 31920071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protonation state of histidine 111 regulates the aggregation of the evolutionary most conserved region of the human prion protein.
    Fonseca-Ornelas L; Zweckstetter M
    Protein Sci; 2016 Aug; 25(8):1563-7. PubMed ID: 27184108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer.
    Matos CO; Passos YM; do Amaral MJ; Macedo B; Tempone MH; Bezerra OCL; Moraes MO; Almeida MS; Weber G; Missailidis S; Silva JL; Uversky VN; Pinheiro AS; Cordeiro Y
    FASEB J; 2020 Jan; 34(1):365-385. PubMed ID: 31914616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases.
    Hekmatimoghaddam S; Zare-Khormizi MR; Pourrajab F
    Biofactors; 2017 Nov; 43(6):737-759. PubMed ID: 26899445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase separation of a yeast prion protein promotes cellular fitness.
    Franzmann TM; Jahnel M; Pozniakovsky A; Mahamid J; Holehouse AS; Nüske E; Richter D; Baumeister W; Grill SW; Pappu RV; Hyman AA; Alberti S
    Science; 2018 Jan; 359(6371):. PubMed ID: 29301985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innate immunity to prions: anti-prion systems turn a tsunami of prions into a slow drip.
    Wickner RB; Edskes HK; Son M; Wu S; Niznikiewicz M
    Curr Genet; 2021 Dec; 67(6):833-847. PubMed ID: 34319422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases.
    Ahmad A; Uversky VN; Khan RH
    Int J Biol Macromol; 2022 Nov; 220():703-720. PubMed ID: 35998851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.