BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34356640)

  • 1. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart.
    Shang R; Rodrigues B
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy.
    Kim MS; Wang Y; Rodrigues B
    Biochim Biophys Acta; 2012 May; 1821(5):800-8. PubMed ID: 22024251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes.
    Wang Y; Rodrigues B
    Biochim Biophys Acta; 2015 Feb; 1851(2):163-71. PubMed ID: 25463481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity.
    Chiu AP; Bierende D; Lal N; Wang F; Wan A; Vlodavsky I; Hussein B; Rodrigues B
    Am J Physiol Heart Circ Physiol; 2018 Jan; 314(1):H82-H94. PubMed ID: 28986359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in Insulin Uncovers a Novel Effect of VEGFB on Cardiac Substrate Utilization.
    Shang R; Lee CS; Wang H; Dyer R; Noll C; Carpentier A; Sultan I; Alitalo K; Boushel R; Hussein B; Rodrigues B
    Arterioscler Thromb Vasc Biol; 2024 Jan; 44(1):177-191. PubMed ID: 38150518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipoprotein lipase and angiopoietin-like 4 - Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease.
    Puthanveetil P; Wan A; Rodrigues B
    Crit Rev Clin Lab Sci; 2015; 52(3):138-49. PubMed ID: 25597500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease.
    Pulinilkunnil T; Rodrigues B
    Cardiovasc Res; 2006 Feb; 69(2):329-40. PubMed ID: 16307734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute intralipid infusion reduces cardiac luminal lipoprotein lipase but recruits additional enzyme from cardiomyocytes.
    Qi D; Kuo KH; Abrahani A; An D; Qi Y; Heung J; Kewalramani G; Pulinilkunnil T; Ghosh S; Innis SM; Rodrigues B
    Cardiovasc Res; 2006 Oct; 72(1):124-33. PubMed ID: 16934788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression.
    Augustus A; Yagyu H; Haemmerle G; Bensadoun A; Vikramadithyan RK; Park SY; Kim JK; Zechner R; Goldberg IJ
    J Biol Chem; 2004 Jun; 279(24):25050-7. PubMed ID: 15028738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism.
    An M; Ryu DR; Won Park J; Ha Choi J; Park EM; Eun Lee K; Woo M; Kim M
    Cardiovasc Res; 2017 Aug; 113(10):1137-1147. PubMed ID: 28430962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart.
    Shang R; Lal N; Lee CS; Zhai Y; Puri K; Seira O; Boushel RC; Sultan I; Räsänen M; Alitalo K; Hussein B; Rodrigues B
    Am J Physiol Endocrinol Metab; 2021 Dec; 321(6):E753-E765. PubMed ID: 34747201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Induced Secretion of Endothelial Heparanase Regulates Cardiac Lipoprotein Lipase and Changes Following Diabetes.
    Lee CS; Zhai Y; Shang R; Wong T; Mattison AJ; Cen HH; Johnson JD; Vlodavsky I; Hussein B; Rodrigues B
    J Am Heart Assoc; 2022 Dec; 11(23):e027958. PubMed ID: 36416172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circulating triglyceride lipolysis facilitates lipoprotein lipase translocation from cardiomyocyte to myocardial endothelial lining.
    Pulinilkunnil T; Qi D; Ghosh S; Cheung C; Yip P; Varghese J; Abrahani A; Brownsey R; Rodrigues B
    Cardiovasc Res; 2003 Sep; 59(3):788-97. PubMed ID: 14499880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cell regulation of cardiac metabolism following diabetes.
    Wang F; Zhang D; Wan A; Rodrigues B
    Cardiovasc Hematol Disord Drug Targets; 2014; 14(2):121-5. PubMed ID: 24801726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites.
    Pulinilkunnil T; Abrahani A; Varghese J; Chan N; Tang I; Ghosh S; Kulpa J; Allard M; Brownsey R; Rodrigues B
    J Mol Cell Cardiol; 2003 Sep; 35(9):1093-103. PubMed ID: 12967632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac metabolic compensation to hypertension requires lipoprotein lipase.
    Yamashita H; Bharadwaj KG; Ikeda S; Park TS; Goldberg IJ
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E705-13. PubMed ID: 18647880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways.
    Goldberg IJ; Eckel RH; Abumrad NA
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S86-90. PubMed ID: 19033209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of increased afterload on cardiac lipoprotein lipase and VLDL receptor expression.
    Vaziri ND; Liang K; Barton CH
    Biochim Biophys Acta; 1999 Jan; 1436(3):577-84. PubMed ID: 9989287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium, the dynamic interface in cardiac lipid transport.
    Scow RO; Blanchette-Mackie EJ
    Mol Cell Biochem; 1992 Oct; 116(1-2):181-91. PubMed ID: 1480147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase.
    An D; Pulinilkunnil T; Qi D; Ghosh S; Abrahani A; Rodrigues B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E246-53. PubMed ID: 15328075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.