These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34356672)
1. Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Perrella F; Coppola F; Petrone A; Platella C; Montesarchio D; Stringaro A; Ravagnan G; Fuggetta MP; Rega N; Musumeci D Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356672 [TBL] [Abstract][Full Text] [Related]
2. Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Ahmad S; Waheed Y; Abro A; Abbasi SW; Ismail S J Mol Model; 2021 Jun; 27(7):206. PubMed ID: 34169390 [TBL] [Abstract][Full Text] [Related]
3. Withanone from Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804 [TBL] [Abstract][Full Text] [Related]
4. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. Freitas FC; Ferreira PHB; Favaro DC; Oliveira RJ J Chem Inf Model; 2021 Mar; 61(3):1226-1243. PubMed ID: 33619962 [TBL] [Abstract][Full Text] [Related]
5. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. Gangadevi S; Badavath VN; Thakur A; Yin N; De Jonghe S; Acevedo O; Jochmans D; Leyssen P; Wang K; Neyts J; Yujie T; Blum G J Phys Chem Lett; 2021 Feb; 12(7):1793-1802. PubMed ID: 33577324 [TBL] [Abstract][Full Text] [Related]
6. Effective inhibition of coronavirus replication by Xu H; Li J; Song S; Xiao Z; Chen X; Huang B; Sun M; Su G; Zhou D; Wang G; Hao R; Wang N Front Biosci (Landmark Ed); 2021 Oct; 26(10):789-798. PubMed ID: 34719206 [No Abstract] [Full Text] [Related]
7. Targeting SARS-CoV-2 Spike Protein/ACE2 Protein-Protein Interactions: a Computational Study. Pirolli D; Righino B; De Rosa MC Mol Inform; 2021 Jun; 40(6):e2060080. PubMed ID: 33904240 [TBL] [Abstract][Full Text] [Related]
8. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related]
9. An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade. Han S; Zhao G; Wei Z; Chen Y; Zhao J; He Y; He YJ; Gao J; Chen S; Du C; Wang T; Sun W; Huang Y; Wang C; Wang J Peptides; 2021 Nov; 145():170638. PubMed ID: 34419496 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19). Nayak SK Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074 [TBL] [Abstract][Full Text] [Related]
11. Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2: an in silico study. Shahbazi B; Mafakher L; Teimoori-Toolabi L J Mol Model; 2022 Mar; 28(4):82. PubMed ID: 35249180 [TBL] [Abstract][Full Text] [Related]
12. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Jena AB; Kanungo N; Nayak V; Chainy GBN; Dandapat J Sci Rep; 2021 Jan; 11(1):2043. PubMed ID: 33479401 [TBL] [Abstract][Full Text] [Related]
13. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Xiang Y; Wang M; Chen H; Chen L Biochem Pharmacol; 2021 Oct; 192():114724. PubMed ID: 34371003 [TBL] [Abstract][Full Text] [Related]
14. Advances in Magnetic Microbead Affinity Selection Screening: Discovery of Natural Ligands to the SARS-CoV-2 Spike Protein. Muchiri RN; Kibitel J; Redick MA; van Breemen RB J Am Soc Mass Spectrom; 2022 Jan; 33(1):181-188. PubMed ID: 34939787 [TBL] [Abstract][Full Text] [Related]
15. Molecular docking simulation reveals ACE2 polymorphisms that may increase the affinity of ACE2 with the SARS-CoV-2 Spike protein. Calcagnile M; Forgez P; Iannelli A; Bucci C; Alifano M; Alifano P Biochimie; 2021 Jan; 180():143-148. PubMed ID: 33181224 [TBL] [Abstract][Full Text] [Related]
16. Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells. Caohuy H; Eidelman O; Chen T; Liu S; Yang Q; Bera A; Walton NI; Wang TT; Pollard HB Sci Rep; 2021 Nov; 11(1):22195. PubMed ID: 34773067 [TBL] [Abstract][Full Text] [Related]
17. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. Haddad M; Gaudreault R; Sasseville G; Nguyen PT; Wiebe H; Van De Ven T; Bourgault S; Mousseau N; Ramassamy C Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269785 [TBL] [Abstract][Full Text] [Related]
18. Luteolin inhibits spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binding to angiotensin-converting enzyme 2. Zhu J; Yan H; Shi M; Zhang M; Lu J; Wang J; Chen L; Wang Y; Li L; Miao L; Zhang H Phytother Res; 2023 Aug; 37(8):3508-3521. PubMed ID: 37166054 [TBL] [Abstract][Full Text] [Related]
19. Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. David AB; Diamant E; Dor E; Barnea A; Natan N; Levin L; Chapman S; Mimran LC; Epstein E; Zichel R; Torgeman A Molecules; 2021 May; 26(11):. PubMed ID: 34072087 [TBL] [Abstract][Full Text] [Related]
20. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S J Genet; 2021; 100(1):. PubMed ID: 33707363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]