These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 34356693)
1. MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy. Fang C; Ouyang P; Yang Y; Qing Y; Han J; Shang W; Chen Y; Du J Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356693 [TBL] [Abstract][Full Text] [Related]
2. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
3. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription. Mohsen MG; Kool ET Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171 [TBL] [Abstract][Full Text] [Related]
4. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection. Liang Z; Huang X; Tong Y; Lin X; Chen Z Talanta; 2022 Sep; 247():123568. PubMed ID: 35609481 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
6. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
7. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375 [TBL] [Abstract][Full Text] [Related]
8. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification. Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808 [TBL] [Abstract][Full Text] [Related]
9. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Xie J; Chen J; Zhang Y; Li C; Liu P; Duan WJ; Chen JX; Chen J; Dai Z; Li M Talanta; 2024 May; 272():125747. PubMed ID: 38364557 [TBL] [Abstract][Full Text] [Related]
10. DNAzyme-Based Target-Triggered Rolling-Circle Amplification for High Sensitivity Detection of microRNAs. Liu C; Han J; Zhou L; Zhang J; Du J Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260285 [TBL] [Abstract][Full Text] [Related]
11. Bioorthogonal Disassembly of Hierarchical DNAzyme Nanogel for High-Performance Intracellular microRNA Imaging. Shang J; Yu S; Li R; He Y; Wang Y; Wang F Nano Lett; 2023 Feb; 23(4):1386-1394. PubMed ID: 36719793 [TBL] [Abstract][Full Text] [Related]
12. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva. Wen Y; Xu Y; Mao X; Wei Y; Song H; Chen N; Huang Q; Fan C; Li D Anal Chem; 2012 Sep; 84(18):7664-9. PubMed ID: 22928468 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive, selective, and rapid detection of miRNA-21 using an RCA/G-quadruplex/QnDESA probing system. Asa TA; Ravi Kumara GS; Seo YJ Anal Methods; 2022 Jan; 14(2):97-100. PubMed ID: 34918721 [TBL] [Abstract][Full Text] [Related]
14. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. Cho EJ; Yang L; Levy M; Ellington AD J Am Chem Soc; 2005 Feb; 127(7):2022-3. PubMed ID: 15713061 [TBL] [Abstract][Full Text] [Related]
15. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay. Lee YJ; Jeong JY; Do JY; Hong CA Anal Bioanal Chem; 2023 Apr; 415(10):1991-1999. PubMed ID: 36853410 [TBL] [Abstract][Full Text] [Related]
16. A universal fluorescence biosensor based on rolling circle amplification and locking probe for DNA detection. Fang Y; Nie L; Wang S; Liu S; Li H; Yu R Mikrochim Acta; 2024 Jul; 191(7):437. PubMed ID: 38951284 [TBL] [Abstract][Full Text] [Related]
17. A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection. Sun S; Wang W; Hu X; Zheng C; Xiang Q; Yang Q; Zhang J; Shen ZF; Wu ZS Analyst; 2022 May; 147(9):1937-1943. PubMed ID: 35389390 [TBL] [Abstract][Full Text] [Related]
18. Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members. Liu X; Zou M; Li D; Yuan R; Xiang Y Anal Chim Acta; 2019 Oct; 1076():138-143. PubMed ID: 31203958 [TBL] [Abstract][Full Text] [Related]
19. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction. Lu W; Wang Y; Song S; Chen C; Yao B; Wang M Analyst; 2018 Oct; 143(20):5046-5053. PubMed ID: 30238116 [TBL] [Abstract][Full Text] [Related]
20. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Tian W; Li P; He W; Liu C; Li Z Biosens Bioelectron; 2019 Mar; 128():17-22. PubMed ID: 30616213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]