These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 34356703)

  • 1. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies.
    Chang CC
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples.
    Wang S; Dong Y; Liang X
    Biosens Bioelectron; 2018 Jun; 109():1-7. PubMed ID: 29522968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.
    Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD
    Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research advances on surface plasmon resonance biosensors.
    Wang Q; Ren ZH; Zhao WM; Wang L; Yan X; Zhu AS; Qiu FM; Zhang KK
    Nanoscale; 2022 Jan; 14(3):564-591. PubMed ID: 34940766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Surface Plasmon Resonance Aptasensor for Human Activated Protein C Sensing.
    Akgönüllü S; Koyun S; Yavuz H; Erdem A; Denizli A
    Methods Mol Biol; 2022; 2393():37-56. PubMed ID: 34837173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X
    Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance.
    Sun D; Wu Y; Chang SJ; Chen CJ; Liu JT
    Talanta; 2021 Jan; 222():121466. PubMed ID: 33167203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing.
    Qu JH; Dillen A; Saeys W; Lammertyn J; Spasic D
    Anal Chim Acta; 2020 Apr; 1104():10-27. PubMed ID: 32106939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for
    Nangare SN; Patil PO
    ACS Biomater Sci Eng; 2021 Jan; 7(1):2-30. PubMed ID: 33455205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules.
    Wang J; Munir A; Zhu Z; Zhou HS
    Anal Chem; 2010 Aug; 82(16):6782-9. PubMed ID: 20704367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J; Munir A; Zhou HS
    Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection.
    Blidar A; Feier B; Tertis M; Galatus R; Cristea C
    Anal Bioanal Chem; 2019 Feb; 411(5):1053-1065. PubMed ID: 30627797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Determination of the Kinetic Parameters of Protein-Aptamer Interaction by Surface Plasmon Resonance.
    Dreymann N; Möller A; Menger MM
    Methods Mol Biol; 2023; 2570():141-153. PubMed ID: 36156780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-Free Direct Detection of Cylindrospermopsin via Graphene-Enhanced Surface Plasmon Resonance Aptasensor.
    Jaric S; Bajaj A; Vukic V; Gadjanski I; Abdulhalim I; Bobrinetskiy I
    Toxins (Basel); 2023 May; 15(5):. PubMed ID: 37235360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.
    Zhou WJ; Halpern AR; Seefeld TH; Corn RM
    Anal Chem; 2012 Jan; 84(1):440-5. PubMed ID: 22126812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection.
    Chen R; Kan L; Duan F; He L; Wang M; Cui J; Zhang Z; Zhang Z
    Mikrochim Acta; 2021 Sep; 188(10):316. PubMed ID: 34476615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance aptasensor for soluble ICAM-1 protein in blood samples.
    Dursun AD; Dogan S; Kavruk M; Busra Tasbasi B; Sudagidan M; Deniz Yilmaz M; Yilmaz B; Ozalp VC; Tuna BG
    Analyst; 2022 Apr; 147(8):1663-1668. PubMed ID: 35312740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance.
    Froehlich CE; He J; Haynes CL
    Anal Chem; 2023 Feb; 95(5):2639-2644. PubMed ID: 36704862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Present and future of surface plasmon resonance biosensors.
    Homola J
    Anal Bioanal Chem; 2003 Oct; 377(3):528-39. PubMed ID: 12879189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Black Phosphorus Nanostructure Based Highly Sensitive and Selective Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review.
    Nangare S; Patil P
    Crit Rev Anal Chem; 2023; 53(1):1-26. PubMed ID: 34053388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.